首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

2.
We have measured the cytochrome compositions of subfractions derived from appressed and non-appressed thylakoids by centrifugation and aqueous two-phase partition. Cytochrome b-559 (HP) was not detectable in the fraction derived from non-appressed thylakoids. Cytochromes f, b-563 and b-559 (LP) were all evenly distributed throughout the thylakoid membrane. This distribution points to plastocyanin as a possible lateral shuttle of reducing equivalents between spatially separated photosystems.Cytochrome f was accessible to externally added plastocyanin in the inside-out vesicles but not in vesicles of normal sidedness. This strongly supports a location at the inner side of the thylakoid membrane. Cytochrome b-563 was slowly reduced by dithionite in vesicles with both normal and inside-out orientation suggesting a location within the membrane interior.  相似文献   

3.
Rolf Bü  rgi  Franz Suter  Herbert Zuber 《BBA》1987,890(3):346-351
The transverse orientation of the light-harvesting chlorophyll a/b protein complex of Photosystem II (LHC II) in the thylakoid membrane of pea was investigated using surface radioiodination with Iodo-GenTM. The labelling effects on LHC II of four different membrane preparations were compared. One preparation was oriented right-side-out (intact thylakoids); two of them had an inside-out orientation exposing the lumenal surface (inside-out vesicles; PS II particles) and one had both sides of the membrane exposed (mechanically damaged thylakoids). It was found that LHC II could be iodinated only in membrane preparations with an exposed lumenal surface. Isolated apoproteins were chemically cleaved. Fragments analysis revealed a tyrosine residue located eight amino acids from the C-terminus as the single iodination site. It is concluded that the C-terminus of LHC II points towards the lumental side of the thylakoid. Differences in the labelling behaviour of the LHC apoproteins could be assigned to a heterogeneity in the C-terminal region in which the tyrosine residue is replaced by phenylalanine.  相似文献   

4.
Inside-out and right-side-out thylakoid vesicles were isolated from spinach chloroplasts by aqueous-polymer two-phase (dextran/polyethylene glycol) partitioning. Externally added plastocyanin stimulated the whole-chain and PSI electron transport rates in the inside-out thylakoid vesicles by about 500 and 350%, respectively, compared to about 50% stimulation for both assays in the fraction enriched in right-side-out vesicles. No apparent stimulation by plastocyanin was observed in unbroken Class II thylakoids. The electron transport between PSII and PSI in inside-out thylakoid vesicles appears to be interrupted due to plastocyanin release from the thylakoids by the Yeda press treatment, but it was restored by externally added plastocyanin. The P700 content of the inside-out membrane preparations, measured by chemical and photochemical methods, was 1 P700 per 1100 to 1500 chlorophylls while it was about 1 P700 per 500 chlorophylls for the right-side-out vesicles. The data presented support the concept of lateral heterogeneity of PS I and II in thylakoid membranes, but does not support a virtual or total absence of PSI in the appressed grana partitions. Further, the heterogeneity does not appear to be as extreme as suggested earlier. Although PSI is somewhat depleted in the appressed grana membrane region, there is adequate photochemically active P700, when sufficient plastocyanin is available, to effectively couple PSI electron transfer with the preponderant PSII in linear electron transport.  相似文献   

5.
Inside-out spinach thylakoid vesicles can be isolated by aqueous polymer two-phase partition following mechanical disruption of spinach chloroplast lamellae (Andersson, B and Åkerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462–472) and a mechanism for their formation has been experimentally supported (Andersson B., Sundby, C. and Albertsson, P.-Å. (1980) Biochim. Biophys. Acta 599, 391–402). Upon disruption, inside-out vesicles may form under stacking conditions, e.g., in 5 mM MgCl2 or 150 mM NaCl, while disruption under destacking conditions, i.e., low concentrations of monovalent cations, gives only right-side-out vesicles. This study deals with the sidedness stability of the isolated inside-out thylakoid vesicles when stored or disrupted by sonication in various ionic environments. The sidedness of thylakoid vesicles was determined by their partition behaviour in an aqueous polymer phase system, direction of proton translocation and aggregation response (stacking) upon addition of MgCl2. The results show that no spontaneous change from everted to normal sidedness occurs upon storage of the inside-out thylakoids. In contrast, sonication of these vesicles under destacking conditions (5 mM NaCl) results in a nearly complete transformation to right-side-out orientation. Also, in the presence of 5 mM MgCl2 or 150 mM NaCl, sonication induced a change in sidedness of the inside-out vesicles but to a lesser extent. The stabilizing effect on the everted sidedness by cations was shown to be a result of preventing vesicle fragmentation by maintaining internal thylakoid appresions rather than by influencing the membrane curvature during resealing. Once released from an appressed state by overcoming the stacking forces, an opened thylakoid membrane shows an absolute preference for turning right-side-out in all media tested. These results strongly support the proposed formation mechanism, in which pairs of neighbouring grana membranes after disruption reseal with each other promoted by their close proximity. Since the inside-out vesicles derive from the grana appressions, their transformation back to normal sidedness exposes the outer membrane surface of appressed thylakoids. This region of the thylakoid membrane is normally hidden in the grana appressions and removal of grana leads concomitantly to lateral intermixing with non-appressed thylakoid components. Thus the current isolation of right-sided vesicles derived from the grana appressions should be a new tool for studies on the molecular organization of the thylakoid membrane.  相似文献   

6.
Four procedures utilizing different detergent and salt conditions were used to isolate oxygen-evolving Photosystem II (PS II) preparations from spinach thylakoid membranes. These PS II preparations have been characterized by freeze-fracture electron microscopy, SDS-polyacrylamide gel electrophoresis, steady-state and pulsed oxygen evolution, 77 K fluorescence, and room-temperature electron paramagnetic resonance. All of the O2-evolving PS II samples were found to be highly purified grana membrane fractions composed of paired, appressed membrane fragments. The lumenal surfaces of the membranes and thus the O2-evolving enzyme complex, are directly exposed to the external environment. Biochemical and biophysical analyses indicated that all four preparations are enriched in the chlorophyll ab-light-harvesting complex and Photosystem II, and depleted to varying degrees in the stroma-associated components, Photosystem I and the CF1-ATPase. The four PS II samples also varied in their cytochrome f content. All preparations showed enhanced stability of oxygen production and oxygen-rate electrode activity compared to control thylakoids, apparently promoted by low concentrations of residual detergent in the PS II preparations. A model is presented which summarizes the effects of the salt and detergent treatments on thylakoid structure and, consequently, on the configuration and composition of the oxygen-evolving PS II samples.  相似文献   

7.
Comparative measurements were made of the fluidity of chloroplast thylakoids, total membrane lipids and polar lipids utilizing the order parameter and motion of spin labels.No significant differences were found in the fluidity of membranes or total membrane lipids from a wild type and a mutant barley (Hordeum vulgare chlorina f2 mutant) which lacks chlorophyll b and a 25 000 dalton thylakoid polypeptide. Redistribution of intrinsic, exoplasmic face (EF) membrane particles by unstacking thylakoid membranes in low salt medium also had no effect on membrane fluidity. However, heating of isolated thylakoids decreased membrane fluidity.The fluidity of vesicles composed of membrane lipids is much greater than that of the corresponding membranes. Fluidity of the membranes, however, increased during greening indicating that the rigidity of the membranes, compared with that of total membrane lipids, is not caused by chlorophyll or its associated peptides. It is concluded that the restriction of motion in the acyl chains in the thylakoids is not caused by chlorophyll or the major intrinsic polypeptide but by some other protein components.  相似文献   

8.
The light-harvesting chlorophyll ab-protein complex has been isolated from barley thylakoids by a rapid, single-step procedure involving adsorption chromatography on controlled-pore glass columns. The Triton X-100-solubilized complex contains a polypeptide of apparent molecular weight, 26,000; the 0.25% Triton X-100 light-harvesting chlorophyll ab-protein has spectral characteristics consistent with its assumed in vivo state. On the same column free chlorophyll and carotenoids have been separated from chlorophyll-protein complex 1, but this complex contained many polypeptides other than those associated with chlorophyll. This method is potentially suitable for the isolation of other thylakoid membrane proteins. It may also be generally applicable for fractionation of intrinsic membrane proteins from other sources and for separation of mixed Triton X-100-lipid micelles.  相似文献   

9.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

10.
Kenneth Leto  Charles Arntzen 《BBA》1981,637(1):107-117
Despite the total loss of Photosystem II activity, thylakoids isolated from the green nuclear maize mutant hcf1-3 contain normal amounts of the light-harvesting chlorophyll ab pigment-protein complex (LHC). We interpret the spectroscopic and ultrastructural characteristics of these thylakoids to indicate that the LHC present in these membranes is not associated with Photosystem II reaction centers and thus exists in a ‘free’ state within the thylakoid membrane. In contrast, the LHC found in wild-type maize thylakoids shows the usual functional association with Photosystem II reaction centers. Several lines of evidence suggest that the free LHC found in thylakoids isolated from hcf1-3 is able to mediate cation-dependent changes in both thylakoid appression and energy distribution between the photosystems: (1) Thylakoids isolated from hcf1-3 and wild-type seedlings exhibit a similar Mg2+-dependent increase in the short/long wavelength fluorescence emission peak ratio at 77 K. This Mg2+ effect is lost following incubation of thylakoids isolated from either source with low concentrations of trypsin. Such treatment results in the partial proteolysis of the LHC in both membrane types. (2) Thylakoids isolated from both hcf1-3 and wild-type seedlings show a similar Mg2+ dependence for the enhancement of the maximal yield of room temperature fluorescence and light scattering; both Mg2+ effects are abolished by brief incubation of the thylakoids with low concentrations of trypsin (3) Mg2+ acts to reduce the relative quantum efficiency of Photosystem I-dependent electron transport at limiting 650 nm light in thylakoids isolated from hcf1-3. (4) The pattern of digitonin fractionation of thylakoid membranes, which is dependent upon structural membrane interactions and upon LHC in the thylakoids, is similar in thylakoids isolated from both hcf1-3 and wild-type seedlings. We conclude that the surface-exposed segment of the LHC, but not the LHC-Photosystem II core association, is necessary for the cation-dependent changes in both thylakoid appression and energy distribution between the two photosystems, and that the LHC itself is able to transfer excitation energy directly to Photosystem I in a Mg2+-dependent fashion in the absence of Photosystem II reaction centers. The latter phenomenon is equivalent to a cation-induced change in the absorptive cross-section of Photosystem I.  相似文献   

11.
Structurally and functionally different tobacco chloroplasts were subjected to digitonin treatment and subsequent fractional centrifugation. The light-harvesting chlorophyll achlorophyll b-protein complex was found to be enriched in the most dense fraction regardless of the presence of grana in the original preparation. It is suggested that isolated thylakoid membranes and fragments thereof which contain sufficient light-harvesting protein may, under appropriate ionic conditions, form aggregates even when they originate from unstacked thylakoid systems. Comparative studies of fluorescence properties and polypeptide composition of the thylakoids suggest that the light-harvesting protein does not contribute significantly to the fluorescence spectrum of isolated chloroplasts as long as this protein is intimately associated with the Photosystem II (PS II) pigment-protein complex responsible for the 685 nm emission. While the PS II-deficient mutant chloroplasts of the variegated tobacco variety NC 95 lacked both the 685 nm fluorescence component and two or three PS II proteins, one of these proteins was found to be very prominent in our chlorophyll b-deficient mutant thylakoids which also displayed an intense 685 nm fluorescence peak. This correlation supports the contention that a 45 kdalton polypeptide is an apoprotein of pigments associated with the PS II reaction center.  相似文献   

12.
The structure and orientation of the major protein constituent of photosynthetic membranes in green plants, the chlorophyll ab light-harvesting complex (LHC) have been investigated by ultraviolet circular dichroism (CD) and polarized infrared spectroscopies. The isolated purified LHC has been reconstituted into phosphatidylcholine vesicles and has been compared to the pea thylakoid membrane. The native orientation of the pigments in the LHC reconstituted in vesicles was characterized by monitoring the low-temperature polarized absorption and fluorescence spectra of reconstituted membranes. Conformational analysis of thylakoid and LHC indicate that a large proportion of the thylakoid protein is in the α-helical structure (56 ± 4%), while the LHC is for 44 ± 7% α-helical. By measuring the infrared dichroism of the amide absorption bands of air-dried oriented multilayers of thylakoids and LHC reconstituted in vesicles, we have estimated the degree of orientation of the α-helical chains with respect to the membrane normal. Infrared dichroism data demonstrate that transmembrane α-helices are present in both thylakoid and LHC with the α-helix axes tilted at less than 30° in LHC and 40° in thylakoid with respect to the membrane normal. In thylakoids, an orientation of the polar C=O ester groups of the lipids parallel to the membrane plane is detected. Our results are consistent with the existence of 3–5 transmembrane α-helical segments in the LHC molecules.  相似文献   

13.
The functional role of a chlorophyll ab complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll ab complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll ab complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll ab complex. Experiments involving reconstitution of the chlorophyll ab complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll ab complex functions as a light-harvesting antenna in PS I.  相似文献   

14.
The transverse distribution of chloroplast cytochromes b-559 (high and low potentials), b-563 and f in pea thylakoid membranes was studied by the effects of trypsin and pronase on inside-out and right-side-out thylakoid vesicles. The high potential (HP) form of cytochrome b-559 was degraded to a low potential (LP) form most rapidly in right-side-out vesicles. In either type of vesicle there was no overall loss of the cytochrome from the membrane. This suggests that the haem group is buried in the membrane but that the cytochrome environment is most labile at the outer surface. Cytochrome b-563 was unaffected by trypsin and only slightly degraded by pronase in inverted vesicles. However, pronase caused the loss of an Mr 1000, non-haem fraction from the cytochrome f polypeptide in inside-out vesices only. The total cytochrome f content (measured spectrophotometrically and by staining polyacrylamide gels for haem associated peroxidase activity) decayed only slightly in either type of vesicle. These observations suggest that cytochrome f is, in part, exposed to the intrathylakoid lumen, whilst its haem group is retained in a more hydrophobic region.  相似文献   

15.
Inside-out thylakoid membrane vesicles can be isolated by aqueous polymer two-phase partition of Yeda press-fragmented spinach chloroplasts (Andersson, B. and Åkerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462–472). The mechanism for their formation has been investigated by studying the yield of inside-out vesicles after various treatments of the chloroplasts prior to fragmentation. No inside-out vesicles were isolated during phase partitioning if the chloroplasts had been destacked in a low-salt medium prior to the fragmentation. Only in those cases where the chloroplast lamellae had been stacked by cations or membrane-paired by acidic treatment did we get any yield of inside-out vesicles. Thus, the intrinsic properties of chloroplast thylakoids seem to be such that they seal into right-side out vesicles after disruption unless they are in an appressed state. This favours the following mechanism for the formation of inside-out thylakoids. After press treatment, a ruptured membrane still remains appressed with an adjacent membrane. Resealing of such an appressed membrane pair would result in an inside-out vesicle.If the compartmentation of chloroplast lamellae into appressed grana and unappressed stroma lamellae is preserved by cations before fragmentation, the inside-out vesicles are highly enriched in photosystem II. This indicates a granal origin which is consistent with the proposed model outlined. Inside-out vesicles possessing photosystem I and II properties in approximately equal proportions could be obtained by acid-induced membrane-pairing of chloroplasts which had been destacked and randomized prior to fragmentation. Since this new preparation of inside-out thylakoid vesicles also exposes components derived from the stroma lamellae it complements the previous preparation.It is suggested that fragmentation of paired membranes followed by phase partitioning should be a general method of obtaining inside-out vesicles from membranes of various biological sources.  相似文献   

16.
An improved, non-detergent, method for preparative isolation of PS II membrane vesicles from spinach chloroplasts is presented. Thylakoids (chlorophyll (Chl) a/b ratio 2.8, Chl/P700 435) were fractionated by Yeda press treatment and aqueous two-phase partition to yield inside-out vesicles (1) (chl a/b 2.2, chl/P700 700). These vesicles were subjected a sonication — phase partitioning procedure; steps of sonication of inside-out vesicles, while still present in a dextran-polyethylene glycol two-phase system were alternated by phase partition. These steps selectively removed P700-containing membrane fragments from the inside-out vesicles and yielded a membrane fraction with improved PS II purity (Chl a/b ratio 1.9, Chl/P700 1500) and retained oxygen evolving capacity (295 mol O2 mg Chl-1 h-1).  相似文献   

17.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

18.
We have compared the fluidity of thylakoid membranes with the membrane present in a Triton X-100-derived, oxygen-evolving Photosystem II (PS II) preparation using two different spin labels. Data obtained with 2,2,6,6-tetramethylpipiridine-N-oxyl (TEMPO) shows that the PS II preparation contains less fluid membrane than the thylakoid. The TEMPO partition parameter (f) is about 2.5-times greater for the thylakoids at 6 mg chlorophyll/ml than for the PS II preparation at the same chlorophyll concentration. Similarly, the rotational correlation time, τ, of TEMPO residing in the membrane of the PS II preparation is about 2-times longer than the τ for TEMPO in the thylakoid membrane. A spin label which partitions more completely into the bilayer, 2-heptyl-2-hexyl-5,5-dimethyloxazolidine-N-oxyl (7N14), indicates a much greater fluidity in the thylakoid membrane than the membrane of the PS II preparation. The PS II preparation appears to have a hydrocarbon phase which approaches the rigid limit of EPR detectable motion. These results are discussed in terms of possible lipid depletion in the PS II preparation and in terms of lateral heterogeneity of hydrocarbon fluidity in the thylakoid membrane caused by the lateral heterogeneity in protein components.  相似文献   

19.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

20.
A rapid procedure to fractionate the thylakoid membrane into two well-separated vesicle populations, one originating from the grana and the other from the stroma-membrane region, has been developed. This was achieved by sonication of thylakoids present in an aqueous two-phase system followed by partitioning either by countercurrent distribution or by a batch procedure in three steps. The membrane populations were analysed according to their composition and photochemical activities. The grana membranes comprise, on chlorophyll basis, about 60% of the thylakoid material and are enriched in PS II, but also contain some PS I, while the stroma membranes comprise about 40% and are enriched in PS I, but also contain some PS II. Cytochrome f was slightly enriched in the grana-derived vesicle fraction. The properties of both PS I and PS II differ between the two populations. The PS I of the grana fraction (PS I) reached half-saturation at about half the light intensity of the PS I in the stroma-membrane fraction (PS Iβ). The rate of P-700 photooxidation under low light illumination was higher for PS I than for PS Iβ (30% larger rate constant), showing that PS I has a larger antenna. The PS II of the grana fraction (PS II) reached half-saturation at half the light intensity compared to the PS II of the stroma-membrane fraction (PS IIβ). The results show that the grana-derived membranes contain PS I and PS II which have larger functional antenna sizes than the corresponding PS Iβ and PS IIβ of the stroma membranes. The results suggest that the photosystems of the grana are designed to allow effective electron transport both at low and high light intensities, while the stroma-membrane photosystems mainly work at high light intensities as a supplement to the grana systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号