首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steven A Hill  Tom ap Rees 《Planta》1995,196(2):335-343
The effect of exogenous glucose on the major fluxes of carbohydrate metabolism in cores of climacteric fruit of banana (Musa cavendishii Lamb ex Paxton) was determined with the intention of using the effects in the application of top-down metabolic control analysis. Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21 °C. Cores were removed from climacteric fruit and incubated in 100 or 200 mM glucose for 4 or 6 h. The rates of starch breakdown, sucrose and fructose accumulation and CO2 production were measured. The steady-state contents of hexose monophosphates, adenylates and pyruvate were determined. In addition, the detailed distribution of label was determined after supply of the following: [U-14C]-, [1-14C]-, [3,414C]and [6-14C]glucose, and [U-14C]glycerol. The data were used to estimate the major fluxes of carbohydrate metabolism. Supply of exogenous glucose led to increases in the size of the hexose-monophosphate pools. There was a small stimulation of the rate of sugar synthesis and a major increase in the rate of starch synthesis. Starch breakdown was inhibited. Respiration responded to the demand for ATP by sugar synthesis. The effect of glucose on fluxes and metabolite pools is discussed in relation to our understanding of the control and regulation of carbohydrate metabolism in ripening fruit.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - AEC adenylate energy charge We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. SAH thanks the managers of the Broodbank Fund for a fellowship.  相似文献   

2.
We propose the following scheme for cerebral uptake and overall metabolism of glucose in vivo: that brain selects from two pools of glucose anomers in arterial blood, that it takes up excess glucose, that glucose enters the brain tissue as glucose-6-phosphate through the actions of mutarotase and hexokinase, that some glucose-6-phosphate becomes metabolized to CO2 and some becomes incorporated into brain carbon pools, and that excess glucose-6-phosphate leaves brain through glucose-6-phosphatase and mutarotase activities. This results from our observations in arterio-venous studies for the determination of cerebral metabolism in humans in vivo that the cerebral uptake of [14C]glucose often appeared to differ from that of unlabeled glucose. With rapidly falling arterial radioactivity, unlabeled glucose uptake was more than [14C]glucose. With rising arterial radioactivity, [14C]glucose extraction extraction exceeded unlabeled glucose. Studies with [14C]glucose-6-phosphate suggested that glucose-6-phosphatase in brain removes excess substrate by dephosphorylation. However, when arterial [14C]glucose increased slowly, [14C]glucose uptake varied considerably and the data resembled human cerebral metabolism of glucose anomers. An experiment employing [13C]glucose and NMR provided further support for our proposed scheme.  相似文献   

3.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

4.
《Experimental mycology》1989,13(1):49-60
The total cellular concentrations of the intermediary metabolites and the carbohydrate end products were determined for starved Candida albicans yeast cells and cells forming germ tubes during a 60-min incubation in imidazole-HCl buffer in the absence and presence of 2.5 mM glucose, 2.5 mM glutamine, and 0.2% serum at 37°C. These cells were also incubated in the presence of tracer [U-14C]glucose and the specific radioactivities of the metabolites and end products determined. The labeling data indicated (1) a minimum of two metabolically independent pools of glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, and uridine diphosphoglucose; (2) compartmentation of the pathways of catabolism and anabolism; (3) channeling of the exogenous tracer glucose into the anabolic pathway compartments of the starved cells; and (4) a significant rate of turnover of cell wall carbohydrates in cells incubated under nongrowth conditions and rapid turnover of these pools in germ tube forming cells. The labeling data will be used to construct kinetic models of carbohydrate metabolism in C. albicans.  相似文献   

5.
Summary The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.  相似文献   

6.
1. The dissimilation of a number of externally added hexose phosphates and 5′-nucleotides by the perfused rat heart is described, and non-specific esterase and 5′-nucleotidase activity associated with the superficial cell membrane or vascular system has been demonstrated. 2. The rate of production of 14CO2 from [U-14C]glucose 6-phosphate suggests that oxidation occurred after hydrolysis to glucose. The incorporation of isotope from [U-14C]glucose 6-phosphate into glycogen was small, and similar to that obtained with [U-14C]glucose as substrate. 3. Glucose 6-phosphate was also partially isomerized to fructose 6-phosphate. Similarly, fructose 6-phosphate was converted mainly into glucose 6-phosphate, but also into glucose and inorganic phosphate. When fructose 1,6-diphosphate was added to the perfusate, a mixture of glucose 6-phosphate, fructose 6-phosphate and triose phosphates accumulated in the medium approximately in the equilibrium proportions of the phosphohexose-isomerase and triose phosphate-isomerase reactions, together with inorganic phosphate and some glucose. Glucose 1-phosphate was hydrolysed to glucose, but was not converted into glucose 6-phosphate. Leakage of enzymes out into the perfusion fluid did not occur. 4. This demonstration that phosphohexose isomerase, triose phosphate isomerase and aldolase may react with extracellular substrates at an appreciable rate suggests that these enzymes are attached to the cell membrane.  相似文献   

7.
A particulate enzyme preparation from horseradish root tissue was shown to catalyze the transfer of 2-acetamido-2-deoxy-d-[14C1]glucose from uridine diphosphate 2-acetamido-2-deoxy-d-[14C1]glucose to an exogenous acceptor molecule derived from horseradish peroxidase. The acceptor was produced from purified peroxidase by the action of a mixture of glycoside hydrolases covalently bound to Sepharose. The membrane preparation containing the transferase was purified approximately 12-fold by aqueous two phase distribution and by discontinuous sucrose density gradient centrifugation.Hydrolysis of the reaction product yielded glucosamine as the only radiolabeled substance. Precipitation of the reaction product by antiserum against peroxidase showed that the label was incorporated into peroxidase. The transferase utilized the acceptor most efficiently when only 12% of the 2-acetamido-2-deoxy-d-glucose was removed from the acceptor. The acceptor lost no accepting capabilities when heated to 100°C for 3 min prior to assay. Trypsin treatment caused a 14% decrease in label incorporated while pronase treatment caused a 93% decrease.  相似文献   

8.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

9.
In this study, 2-[18F]fluoro-2-deoxy-d-glucose, ([18F]FDG) was used to radiolabel human granulocytes in vitro for possible clinical use by positron emission tomography (PET). Uptake of [18F]FDG was dependent on the amount of glucose in the labelling medium, e.g. when 1 × 107 granulocytes were incubated with [18F]FDG containing 15μg/mL glucose 80% of [18F]FDG was incorporated within 30 min, but in the presence of 1 mg/mL of glucose it was reduced to 2%. Increasing the cell concentration and activating the granulocytes with Streptococcus pneumoniae, opsonized zymosan or phorbol myristate acetate all increased the uptake of [18F]FDG. Retention of the [18F]FDG by the cells as [18F]FDG-6-phosphate was also dependent on the extracellular glucose concentration, 9% was released within 60 min in the absence of glucose, but 27% in the presence of 1 mg/mL glucose.  相似文献   

10.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

11.
Steven A Hill  Tom ap Rees 《Planta》1995,197(2):313-323
The aim of this work was to determine the effects of hypoxia on the major fluxes of carbohydrate metabolism in climacteric fruit of banana (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in air at 21°C in the dark. When the climacteric began, fruit were transferred to 15 or 10% oxygen and were analysed once the climacteric peak had been reached 8–12 h later. The rates of starch breakdown, sucrose, glucose and fructose accumulation, and CO2 production were determined, as were the contents of hexose monophosphates, adenylates and pyruvate. In addition, the detailed distribution of label was determined after supplying [U-14C]-, [1-14C]-, [3,4-14C]- and [6-14C]glucose, and [U-14C]glycerol to cores of tissue under hypoxia. The data were used to estimate the major fluxes of carbohydrate metabolism. There was a reduction in the rate of respiration. The ATP/ADP ratio was unaffected but there was a significant increase in the content of AMP. In 15% oxygen only minor changes in fluxes were observed. In 10% oxygen starch breakdown was reduced and starch synthesis was not detected. The rate of sucrose synthesis decreased, as did the rate of re-entry of hexose sugars into the hexose monophosphate pool. There was a large increase in both the glycolytic flux and in the flux from triose phosphates to hexose monophosphates. It is argued that the increase in these fluxes is due to activation of pyrophosphate: fructose-6-phosphate 1-phosphotransferase, and that this enzyme has an important role in hypoxia. The results are discussed in relation to our understanding of the control of carbohydrate metabolism in hypoxia.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - PPi inorganic pyro-phosphate We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. S.A.H. thanks the managers of the Brood bank Fund for a fellowship.  相似文献   

12.
The fate of unlabelled D-glucose and D-[2-3H]glucose in pancreatic islets was simulated taking into account experimental values for glycolytic flux, intracellular concentration of D-glucose 6-phosphate and phosphoglucoisomerase activity. The model, which also takes into account the isotopic discrimination in velocity and intramolecular transfer of tritium between D-[2-3H]glucose 6-phosphate and D-[1-3H]fructose 6-phosphate in the reaction catalyzed by phosphoglucoisomerase, revealed that the predicted generation of 3HOH from D-[2-3H]glucose was much higher than the true experimental value. Such a discrepancy is reinforced by the consideration that the generation of 3HOH from D-[2-3H]glucose in islet cells is not solely attributable to the phosphoglucoisomerase-catalyzed detritiation of hexose 6-phosphates metabolized in the glycolytic pathway. In order to reconcile experimental and theoretical values for 3HOH production, it was found necessary to postulate enzyme-to-enzyme tunnelling of hexose 6-phosphates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. It is proposed that such a tunnelling may favour the anomeric specificity of D-glucose metabolism in islet cells, by restricting the anomerization of hexose 6-phosphates.  相似文献   

13.
A fructose diphosphatase–phosphofructokinase substrate cycle has been reconstructed in vitro to provide a system that recycles fructose 6-phosphate and hydrolyses ATP to ADP and Pi. The concerted actions of glucose phosphate isomerase, phosphofructokinase, aldolase and triose phosphate isomerase catalysed the loss of 3H from [5-3H,U-14C]glucose 6-phosphate. This was used as the basis of a method for the estimation of the fructose diphosphatase–phosphofructokinase substrate cycle. For the reconstructed cycle, the rate of decrease of the 3H/14C ratio in [5-3H,U-14C]hexose 6-phosphate was proportional to the rate of fructose 6-phosphate substrate cycling. A detailed theoretical treatment of this relationship is developed, which enables the rate of substrate cycling to be determined in vivo.  相似文献   

14.
Summary Glucose metabolism has been studied in Salmo trutta red blood cells. From non-metabolizable analogue (3-O-methyl glucose and l-glucose) uptake experiments it is concluded that there is no counterpart to the membrane transport system for glucose found in mammalian red blood cells. Once within the cells, glucose is directed to CO2 and lactate formation through both the Embden-Meyerhoff and hexose monophosphate shunts; lactate appears as the most important endproduct of glucose metabolism in these cells. From experiments under anaerobic conditions, and in the presence of an inhibitor of pyruvate transfer to mitochondria, most of the CO2 formed appears to derive from the hexose monophosphate pathway. Appreciable O2 consumption has been detected, but there is no clear relationship between this and substrate metabolism. Key enzymes of glucose metabolism hexokinase, fructose-6-phosphate kinase and, probably, pyruvate kinase are out of equilibrium, confirming their regulatory activity in Salmo trutta red blood cells. The presence of isoproterenol, a catecholamine analogue, induces important changes in glucose metabolism under both aerobic and anaerobic conditions, and increases the production of both CO2 and lactate. From the data presented, glucose appears to be the major fuel for Salmo trutta red blood cells, showing a slightly different pattern of glucose metabolism from rainbow trout red blood cells.Abbreviations EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - GOT glutamate oxalacetate transaminase - GPI glucose phosphate isomerase - HK hexokinase - HMS hexose monophosphate shunt - IP isoproterenol - LDH lactate dehydrogenase - MCB modified Cortland buffer - OMG 3-O-methyl glucose - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - TAC tricarboxylic acid cycle  相似文献   

15.
Epimerization of either 2-acetamido-2-deoxy-d-glucose (1) or 2-acetamido-2-deoxy-d-mannose (2) in basic tritium oxide gave 2-acetamido-2-deoxy-d-[2-3H]-glucose (3) and 2-acetamido-2-deoxy-d[2-3H]mannose (4). In both cases, compound 3 was isolated in higher proportion and higher specific activity than 4. The mechanism of the epimerization of 1 and 2 is discussed.  相似文献   

16.
Based on experimental data, a model is proposed for the interconversion of either unlabelled hexose phosphates or D-[2-3H]glucose 6-phosphate and D-[1-3H]fructose 6-phosphate in the reaction catalyzed by phosphoglucoisomerase. This model takes into account the known differences in maximal velocity and affinity for each substrate, the intramolecular transfer of tritium between C1 and C2, and the isotopic discrimination between unlabelled and tritiated esters. This model reveals that, in a close system characterized by the progressive detritiation of hexose phosphates, the concentration ratio of D-glucose 6-phosphate to D-fructose 6-phosphate is much higher with the tritiated than unlabelled esters, a paradoxical increase in the specific radioactivity of D-glucose 6-phosphate above its initial value being even observed during the initial period of exposure of D-[2-3H]glucose 6-phosphate to phosphoglucoisomerase. The extension of this model to an open system may be essential for the correct interpretation of radioactive data collected in intact cells exposed to D-[2-3H]glucose.  相似文献   

17.
1. The deoxyfluoro-d-glucopyranose 6-phosphates are substrates for both yeast and rat liver glucose 6-phosphate dehydrogenase. 2. The V(max.) values (relative to d-glucose 6-phosphate) were determined for a series of d-glucose 6-phosphate derivatives substituted at C-2. The V(max.) values decreased with increasing electronegativity of the C-2 substituent. This is consistent with a mechanism involving hydride-ion transfer. 3. 2-Deoxy-d-arabino-hexose 6-phosphate (2-deoxy-d-glucose 6-phosphate) showed substrate inhibition with the yeast enzyme but not with the rat liver enzyme. 4. 2-Amino-2-deoxy-d-glucose 6-phosphate (d-glucosamine 6-phosphate) was a substrate for the yeast enzyme but a competitive inhibitor for the rat liver enzyme. 5. Lineweaver-Burk plots for the d-glucose 6-phosphate derivatives with yeast glucose 6-phosphate dehydrogenase were biphasic.  相似文献   

18.
The rate of ADP-glucose formation from [14C]glucose 6-phosphate and ATP by the soluble fraction of lysed chloroplasts is studied as a function of the levels of metabolites (3-phosphoglycerate, orthophosphate, hexose monophosphate, and ATP) as determined in whole chloroplasts of Spinacia oleracea in light and dark.  相似文献   

19.
To elucidate the role of acetyl-l-carnitine in the brain, we used a novel method, ‘Bioradiography,’ in which the dynamic process could be followed in living slices by use of positron-emitter labeled compounds and imaging plates. We studied the incorporation of 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) into rat brain slices incubated in oxygenated Krebs-Ringer solution. Under the glucose-free condition, [18F]FDG uptake rate decreased with time and plateaued within 350 min in the cerebral cortex and cerebellum, and the addition of 1 or 5 mM acetyl-l-carnitine did not alter the [18F]FDG uptake rate. When a glutaminase inhibitor, 0.5 mM 6-diazo-5-oxo-l-norleucine (DON), was added under the normal glucose condition, [18F]FDG uptake rate decreased. Acetyl-l-carnitine (1 mM), which decreased [18F]FDG uptake rate, reversed this DON-induced decrease in [18F]FDG uptake rate in the cerebral cortex. These results suggest that acetyl-l-carnitine can be used for the production of releasable glutamate rather than as an energy source in the brain.  相似文献   

20.
The transport of 2-deoxy-d-glucose, a nonmetabolizable glucose analogue, into Aspergillus nidulans against a concentration gradient does not appear to require phosphorylation, despite the high levels of sugar phosphates accumulated rapidly within the cell. Two other deoxy analogues of d-glucose, 6-deoxy-d-glucose and 1,5-anhydro-d-glucitol (1-deoxy-d-glucose), although they lack the C-6 and the C-1 hydroxyl groups, respectively, and thus cannot be phosphorylated in those positions, still competitively inhibit the entry of 2-deoxy-d-glucose. Moreover, 6-deoxy-d-glucose can be concentrated against a gradient within the cell without the accumulation of 6-deoxy-d-glucose-phosphate. d-Galactose shows an intracellular ratio of free to phosphorylated sugar similar to that found for 2-deoxy-d-glucose in cells that have galactokinase, but no sugar phosphates are found in a galactokinaseless mutant strain. These data suggest that intracellular kinases are responsible for the sugar phosphate pool; and indeed, a kinase capable of phosphorylating 2-deoxy-d-glucose has been demonstrated. Finally, experiments on the kinetics of labeling of intracellular free sugar and sugar phosphate pools with (14)C-2-deoxy-d-glucose show that radioactivity appears first in the free sugar pool and after a delay enters the sugar phosphate pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号