首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional role of a chlorophyll ab complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll ab complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll ab complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll ab complex. Experiments involving reconstitution of the chlorophyll ab complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll ab complex functions as a light-harvesting antenna in PS I.  相似文献   

2.
John Biggins  Jan Svejkovsky 《BBA》1980,592(3):565-576
A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields.Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b (648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl ab ratio of approx. 6 and the LD spectrum was positive with a maximum at 690–694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack Chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid.  相似文献   

3.
Phosphorylation in vitro of the light-harvesting chlorophyll ab protein complex associated with Photosystem II (LHCII) resulted in the lateral migration of a subpopulation of LHCII from the grana to the stroma lamellae. This movement was characterized by a decrease in the chlorophyll ab ratio and an increase in the 77 K fluorescence emission at 681 nm in the stroma lamellae following phosphorylation. Polyacrylamide gel electrophoresis indicated that the principal phosphoproteins under these conditions were polypeptides of 26–27 kDa. These polypeptides increased in relative amount in the stroma lamellae and decreased in the grana during phosphorylation. Pulse/chase experiments confirmed that the polypeptides were labelled in the grana and moved to the stroma lamellae in the subsequent chase period. A fraction at the phospho-LHCII, however, was unable to move and remained associated with the grana fraction. LHCII which moved out into the stroma lamellae effectively sensitized Photosystem I (PS I), since the ability to excite fluorescence emission at 735 nm (at 77 K) by chlorophyll b was increased following phosphorylation. These data support the ‘mobile antenna’ hypothesis proposed by Kyle, Staehelin and Arntzen (Arch. Biochem. Biophys. (1983) 222, 527–541) which states that the alterations in the excitation-energy distribution induced by LHCII phosphorylation are, in part, due to the change in absorptive cross-section of PS II and PS I, resulting specifically from the movement of LHCII antennae chlorophylls from the PS-II-enriched grana to the PS-I-enriched stroma lamellae.  相似文献   

4.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

5.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

6.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

7.
Chloroplast thylakoid protein phosphorylation produces changes in light-harvesting properties and in membrane structure as revealed by freeze-fracture electron microscopy. Protein phosphorylation resulted in an increase in the 77 °K fluorescence signal at 735 nm relative to that at 685 nm. In addition, a decrease in connectivity between Photosystem II centers (PS II) and a dynamic quenching of the room temperature variable fluorescence was observed upon phosphorylation. Accompanying these fluorescence changes was a 23% decrease in the amount of stacked membranes. Microscopic analyses indicated that 8.0-nm particles fracturing on the P-face moved from the stacked into the unstacked regions upon phosphorylation. The movement of the 8.0-nm particles was accompanied by the appearance of chlorophyll b and 25 to 29 kD polypeptides in isolated stroma lamellae fractions. We conclude that phosphorylation of a population of the light-harvesting chlorophyll ab protein complexes (LHC) in grana partitions causes the migration of these pigment proteins from the PS II-rich appressed membranes into the Photosystem I (PS I) enriched unstacked regions. This increases the absorptive cross section of PS I. In addition, we suggest that the mobile population of LHC functions to interconnect PS II centers in grana partitions; removal of this population of LHC upon phosphorylation limits PS II → PS II energy transfer and thereby favors spillover of energy from PS II to PS I.  相似文献   

8.
Illumination of the chlorophyll ab light-harvesting complex in the presence of p-nitrothio[14C]phenol caused quenching of fluorescence emission at 685 nm (77 K) relative to 695 nm and covalent modification of light-harvesting complex polypeptides. Fluorescence quenching saturated with one p-nitrothiophenol bound per light-harvesting complex polypeptide (10–13 chlorophylls); 12 maximal quenching occurred with one p-nitrothiophenol bound per light-harvesting complex polypeptides (190–247 chlorophylls). This result provides direct evidence for excitation energy transfer between light-harvesting complex subunits which contain 4–6 polypeptides plus 40–78 chlorophylls per complex.Illumination of chloroplasts or Photosystem II (PS II) particles in the presence of p-nitrothio[14C]phenol caused inhibition of PS II activity and labeling of several polypeptides including those of 42–48 kilodaltons previously identified as PS II reaction center polypeptides. In chloroplasts, inhibition of oxygen evolution accelerated p-nitrothiophenol modification reactions; DCMU or donors to PS II decreased p-nitrothiophenol modification. These results are consistent with the hypothesis that accumulation of oxidizing equivalents on the donor side of PS II creates a ‘reactive state’ in which polypeptides of PS II are susceptible to p-nitrothiophenol modification.  相似文献   

9.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

10.
Dvorah Ish-Shalom  Itzhak Ohad 《BBA》1983,722(3):498-507
The polypeptide pattern, chlorophyll-protein complexes, fluorescence emission spectra and light intensity required for saturation of electron flow via Photosystem (PS) II and PS I in a pale-green photoautotrophic mutant, y-lp, were compared to those of the parent strain, Chlamydomonas reinhardii y-1 cells. The mutant exhibits a 686 nm fluorescence yield at 25°C and 77 K 2–6-fold higher than that of the parent strain cells, and is deficient in thylakoid polypeptides 14, 17.2, 18 and 22 according to the nomenclature of Chua (Chua, N.-H. (1980) Methods Enzymol. 60C, 434–446). All chlorophyll-protein complexes ascribed to PS II and the CP I complex were present in both type of cells. However, a chlorophyll-protein complex CP Ia containing — in the parent strain — the 66–68 kDa polypeptides of CP I and the four above-mentioned polypeptides, was absent in the mutant. It was previously reported that a chlorophyll-protein complex, CP O, obtained from C. reinhardii contains five polypeptides, namely, 14, 15, 17.2, 18 and 22 (Wollman, F.A. and Bennoun, P. (1982) Biochim. Biophys. Acta 680, 352–360). A CP O-like complex was present also in the mutant y-lp cells but it contains only one polypeptide, 15. Energy transfer from PS II to PS I was not impaired in the mutant, although a 4-fold higher light intensity was required for the saturation of PS I electron flow in the y-lp cells as compared with the parent strain. No difference was found in the light saturation curves for PS II activity between the mutant and parent strain cells. Based on these and additional data (Gershoni, J.M., Shochat, S., Malkin, S. and Ohad, I. (1982) Plant Physiol. 70, 637–644), it is concluded that the chlorophyll-protein complexes of PS I in Chlamydomonas comprise a reaction center-core antenna complex containing the 66–68 kDa polypeptides (CP I), a connecting antenna consisting of four polypeptides (14, 17.2, 18 and 22), and a light-harvesting antenna containing one polypeptide, 15. These appear to be organized as a complex, CP Ia. The interconnecting antenna is deficient in the y-lp mutant and thus the CP Ia complex is unstable and energy is not transferred from CP O to CP I. The effective cross-section of PS I antenna is thus reduced and a high fluorescence is emitted at 686 nm.  相似文献   

11.
After solubilization of photosynthetic membranes by digitonin, three main protein pigment complexes were isolated by electrophoresis with deoxycholate as detergent.The band with the slowest mobility, fraction 1, had PS 1 activity and was devoid of PS 2 activity. This fraction was four times enriched in P700 when compared with chloroplasts. Fraction 1 had little chl b, a long wavelength absorption maximum in the red, a maximum of low temperature emission fluorescence at 730nm, and a circular dichroism spectrum characteristic of PS 1 enriched fraction.Fraction 2 exhibited a PS 2 activity and no PS 1 activity. It was enriched five times in PS 2 reaction centre and had little chl b and carotenoids. The absorption maximum was at 674 nm and the low temperature fluorescence emission maximum was at 700 nm. Fraction 2 might be useful PS 2 enriched particle because of the great stability of this fraction with regard to photochemical activity and also rapidity and simplicity of its preparation.Fraction 3, which had the fastest migration, was devoid of photochemical activities; It was rich in chl b and had the fluorescence and the circular dichroism spectrum characteristic of an antenna complex.Abbreviations PS 1 (2) photosystem 1 (2) - chl chlorophyll - car carotenoid - Q primary plastoquinone electron acceptor - P700 primary electron donor of PS 1 - P680 primary electron donor of PS 2 - K3Fe(CN)6 potassium ferricyanide - DCMU dichlorophenyldimethylurea - DCPIP dichlorophenolindophenol - DPC diphenyl-carbazide  相似文献   

12.
Styrene-maleic acid copolymer was used to effect a non-detergent partial solubilization of thylakoids from spinach. A high density membrane fraction, which was not solubilized by the copolymer, was isolated and was highly enriched in the Photosystem (PS) I-light-harvesting chlorophyll (LHC) II supercomplex and depleted of PS II, the cytochrome b6/f complex, and ATP synthase. The LHC II associated with the supercomplex appeared to be energetically coupled to PS I based on 77 K fluorescence, P700 photooxidation, and PS I electron transport light saturation experiments. The chlorophyll (Chl) a/b ratio of the PS I-LHC II membranes was 3.2 ± 0.9, indicating that on average, three LHC II trimers may associate with each PS I. The implication of these findings within the context of higher plant PS I antenna organization is discussed.  相似文献   

13.
Structurally and functionally different tobacco chloroplasts were subjected to digitonin treatment and subsequent fractional centrifugation. The light-harvesting chlorophyll achlorophyll b-protein complex was found to be enriched in the most dense fraction regardless of the presence of grana in the original preparation. It is suggested that isolated thylakoid membranes and fragments thereof which contain sufficient light-harvesting protein may, under appropriate ionic conditions, form aggregates even when they originate from unstacked thylakoid systems. Comparative studies of fluorescence properties and polypeptide composition of the thylakoids suggest that the light-harvesting protein does not contribute significantly to the fluorescence spectrum of isolated chloroplasts as long as this protein is intimately associated with the Photosystem II (PS II) pigment-protein complex responsible for the 685 nm emission. While the PS II-deficient mutant chloroplasts of the variegated tobacco variety NC 95 lacked both the 685 nm fluorescence component and two or three PS II proteins, one of these proteins was found to be very prominent in our chlorophyll b-deficient mutant thylakoids which also displayed an intense 685 nm fluorescence peak. This correlation supports the contention that a 45 kdalton polypeptide is an apoprotein of pigments associated with the PS II reaction center.  相似文献   

14.
C.J. Arntzen  C.L. Ditto 《BBA》1976,449(2):259-274
When isolated chloroplasts from mature pea (Pisum sativum) leaves were treated with digitonin under “low salt” conditions, the membranes were extensively solubilized into small subunits (as evidenced by analysis with small pore ultrafilters). From this solubilized preparation, a photochemically inactive chlorophyll · protein complex (chlorophyll ab ratio, 1.3) was isolated. We suggest that the detergent-derived membrane fragment from mature membranes is a structural complex within the membrane which contains the light-harvesting chlorophyll ab protein and which acts as a light-harvesting antenna primarily for Photosystem II.Cations dramatically alter the structural interaction of the light-harvesting complex with the photochemically active system II complex. This interaction has been measured by determining the amount of protein-bound chlorophyll b and Photosystem II activity which can be released into dispersed subunits by digitonin treatment of chloroplast lamellae. When cations are present to cause interaction between the Photosystem II complex and the light-harvesting pigment · protein, the combined complexes pellet as a “heavy” membranous fraction during differential centrifugation of detergent treated lamellae. In the absence of cations, the two complexes dissociate and can be isolated in a “light” submembrane preparation from which the light-harvesting complex can be purified by sucrose gradient centrifugation.Cation effects on excitation energy distribution between Photosystems I and II have been monitored by following Photosystem II fluorescence changes under chloroplast incubation conditions identical to those used for detergent treatment (with the exception of chlorophyll concentration differences and omission of detergents). The cation dependency of the pigment · protein complex and Photosystem II reaction center interactions measured by detergent fractionation, and regulation of excitation energy distribution as measured by fluorescence changes, were identical. We conclude that changes in substructural organization of intact membranes, involving cation induced changes in the interaction of intramembranous subunits, are the primary factors regulating the distribution of excitation energy between Photosystems II and I.  相似文献   

15.
A highly purified light-harvesting pigment-protein complex (LHC) was obtained by fractionation of cation-depleted chloroplast membranes using the nonionic detergent, Triton X-100. The isolated LHC had a chlorophyll ab ratio of 1.2 and exhibited no photochemical activity. SDS-polyacrylamide gel electrophoresis of the LHC revealed three polypeptides in the molecular weight classes of 23, 25, and 30 × 103. Antibodies were prepared against the LHC and their specificity was established. The effect of the α-LHC (antibodies to LHC) on salt-mediated changes in PS I and PS II photochemistry, Chl α fluorescence inductions, and 77 °K fluorescence emission spectra was investigated. The results show that: (i) The Mg2+-induced 20% decrease in photosystem I (PS I) quantum yield observed in control chloroplasts was blocked by the presence of the α-LHC antibody, (ii) The Mg2+-induced 70% increase in photosystem II (PS II) quantum yield of control chloroplasts was reduced 35% for plastids in the presence of α-LHC antibody, (iii) The Mg2+-induced increase in room-temperature variable fluorescence was reduced 60% by α-LHC antibody, (iv) The Mg2+-induced increase in the F685F730 emission peak ratio at 77 °K was inhibited 50% in the presence of α-LHC antibody. These results provide direct evidence for the involvement of the light-harvesting complex in cation regulation of energy redistribution between the photosystems. The fact that the α-LHC antibody does not fully block Mg2+-induced PS II increases or chlorophyll fluorescence increases supports the concept that Mg2+ has two mechanisms of action: one effect on energy distribution and a second direct effect on photosystem II centers.  相似文献   

16.
《BBA》2020,1861(7):148191
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms – absorbing at around 650 nm and 658 nm – and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.  相似文献   

17.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

18.
A.W.D. Larkum  Jan M. Anderson 《BBA》1982,679(3):410-421
A Photosystem II reaction centre protein complex was extracted from spinach chloroplasts using digitonin. This complex showed (i) high rates of dichloroindophenol and ferricyanide reduction in the presence of suitable donors, (ii) low-temperature fluorescence at 685 nm with a variable shoulder at 695 nm which increased as the complex aggregated due to depletion of digitonin and (iii) four major polypeptides of 47, 39, 31 and 6 kDa on dissociating polyacrylamide gels. The Photosystem II protein complex, together woth the P-700-chlorophylla protein complex and light-harvesting chlorophyll ab-protein complex (LHCP) also isolated using digitonin, were reconstituted with lipids from spinach chloroplasts to form proteoliposomes. The low-temperature (77 K) fluorescence properties of the various proteoliposomes were analysed. The F685F695 ratios of the Photosystem II reaction centre protein complex-liposomes decreased as the lipid to protein ratios were increased. The F681F697 ratios of LHCP-liposomes were found to behave similarly. Light excitation of chlorophyll b at 475 nm stimulated emission from both the Photosystem II protein complex (F685 and F695) and the P-700-chlorophyll a-protein complex (F735) when LHCP was reconstituted with either of these complexes, demonstrating energy transfer between LHCP and PS I or II complexes in liposomes. No evidence was found for energy transfer from the PS II complex to the P-700-chlorophyll a-protein complex reconstituted in the same proteoliposome preparation. Proteoliposome preparations containing all three chlorophyll-protein complexes showed fluorescence emission at 685, 700 and 735 nm.  相似文献   

19.
A P700-chlorophyll a-protein complex has been purified from several higher plants by hydroxylapatite chromatography of Triton X-100-dissociated chloroplast membranes. The isolated material exhibits a red wavelength maximum at 677 nm, major spectral forms of chlorophyll a at 662, 669, 677, and 686 nm, a chlorophyll/P700 ratio of 40–451, and contains only chlorophyll a and β-carotene of the photosynthetic pigments present in the chloroplast. The spectral characteristics and composition of the higher plant material are homologous to those of the P700-chlorophyll a-protein previously isolated from blue-green algae; however, unlike the blue-green algal component, cytochromes f and b6 are associated with the higher plant material. Evidence is presented that a chlorophyll a-protein termed “Complex I” which can be isolated from sodium dodecyl sulfate extracts of chloroplast membranes is a spectrally altered form of the eucaryotic P700-chlorophyll a-protein. The isolation procedure described in this paper is a more rapid technique for obtaining the heart of photosystem I than presently exists; furthermore, the P700 photooxidation and reduction kinetics in the fraction are improved over those in other isolated components showing the same enrichment of P700. It appears very probable that the heart of photosystem I is organized in the same manner in all chlorophyll a-containing organisms.  相似文献   

20.
Six chlorophyll (Chl)-protein complexes associated with photosystemI (CPla), and the PS I reaction center complex (CPl) were isolatedfrom the thylakoid membranes of the green alga, Bryopsis maxima,by SDS-polyacrylamide gel electrophoresis. CPla had four polypeptides(22, 24, 25, 26 kDa) in addition to the 67 kDa polypeptide ofCPl. These complexes may thus possibly be a combination of CPland antenna complexes for PS I. Six CPla showed almost the sameoptical properties, with absorption maxima at 650 and 677 nmand contained carotene and a small amount of xanthophylls. TheChl a/b ratios of these CPla were about 2, while that of CPlwas 14. CPla showed a fluorescence emission maximum at 695 nm;its excitation spectrum had peaks at 438, 470 and 540 nm, correspondingto the absorption maxima of Chl a, Chl b, xanthophylls, respectively.An antenna complex free of CPl has been detected in some plantsbut was not found in the present alga. 1Present address: Department of Botany, The University of Adelaide,Adelaide, S.A. 5001, Australia (Received April 17, 1986; Accepted June 26, 1986)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号