首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The addition of ATP to thylakoids isolated from Chlorella vulgaris is shown to lead to a quenching of fluorescence originating from Photosystem II and phosphorylation of chlorophyll achlorophyll b light-harvesting protein (LHCP) directly analogous to that reported for higher-plant chloroplasts. The time courses of these two processes are shown to be identical. Parallel measurements of ATP-induced changes in the fluorescence properties of isolated algal thylakoids and light-driven (State 1 / State 2 changes) in whole cells strongly support the idea that LHCP phosphorylation plays an important role in State 2 adaptation under in vivo conditions.  相似文献   

2.
Experiments are presented to show that the phosphorylation of the light-harvesting chlorophyll ab-protein complex (LHC) induces structural reorganisation within the thylakoid membrane in response to the introduction of additional negative surface charges. The effect of cations of different valency on chlorophyll fluorescence measurements indicates that LHC-phosphorylation-induced reorganisation involves a change in the electrostatic screening capability of the added cation. At intermediate levels of cations (e.g., 1 or 2 mM Mg2+), which substantially stack non-phosphorylated membranes, it was found that membrane phosphorylation caused considerable unstacking as monitored by light scattering and electron microscopy. Concomitant with this was a large decrease in chlorophyll fluorescence indicative of randomisation of chlorophyll protein complexes which would result in an increase in energy transfer between the photosystems as well as an absorption cross-section change. At higher concentrations (e.g., above 5 mM Mg2+) a persistent ATP-induced decrease in chlorophyll fluorescence has been attributed to the displacement of charged phosphorylated LHC from the appressed granal to the non-appressed stromal lamellae, thus decreasing the absorption cross-section of Photosystem II. Under these circumstances only a small degree of unstacking was detected by light scattering and measurements of the percentage of thylakoid length which is stacked to form grana. However, when considered on a surface area basis, the structural changes observed can qualitatively account for the magnitude of the chlorophyll fluorescence quenching due to the lateral diffusion of LHC.  相似文献   

3.
A. Telfer  J.F. Allen  J. Barber  J. Bennett 《BBA》1983,722(1):176-181
In osmotically shocked pea chloroplasts illuminated with modulated blue-green light (light 2), phosphorylation of the light-harvesting chlorophyll ab-protein complex (LHCP) accompanies the slow decrease in modulated fluorescence that indicates adaptation to light absorbed predominantly by Photosystem II (State 2). On subsequent additional illumination with continuous far-red light (absorbed predominantly by Photosystem I; light 1) both effects are reversed: modulated chlorophyll fluorescence emission increases (indicating adaptation towards State 1) and LHCP is dephosphorylated. Net phosphorylation and dephosphorylation of LHCP induced by light 2 and excess light 1, respectively, occur on the same time scale as the ATP-dependent chlorophyll fluorescence changes indicative of State 2 and State 1 transitions. The phosphatase inhibitor NaF (10 mM), stimulates the effect of blue-green light on fluorescence and prevents the effect of far-red light. These results provide a demonstration that light of different wavelengths can control excitation energy distribution between the two photosystems via the plastoquinol-activated LHCP phosphorylation mechanism suggested previously (Allen, J.F., Bennett, J., Steinback, K.E. and Arntzen, C.J. (1981) Nature 291, 25–29; and Horton, P. and Black, M.T. (1980) FEBS Lett. 119, 141–144).  相似文献   

4.
The yield of P-700 photooxidation has been studied in isolated chloroplast membranes by measuring the extent of the flash-induced absorption increase at 820 nm (ΔA820) in the microsecond time range. The extent of ΔA820 induced by non-saturating laser flashes was increased by the following treatments. (1) Suspension of chloroplast membranes in Mg2+ free medium (plus 15 mM K+) which leads to unstacking of grana (as detected by a decrease in chlorophyll fluorescence). (2) Reduction of Q, the primary acceptor of Photosystem II, in the presence of 20 μM 3-(3,4 dichlorophenyl)-1,1-dimethylurea by a saturating xenon flash, fired 300 ms before the laser flash. (3) Phosphorylation of light harvesting chlorophyll ab-protein complex, which occurs in the presence of ATP after activation of protein kinase in the dark with NADPH and ferredoxin. We conclude that the Mg2+ concentration, the redox state of Q and the protein-phosphorylation all can control the photochemical efficiency of P-700 photooxidation in isolated chloroplasts, and we discuss these results in relation to control of excitation energy distribution between the two photosystems. We also discuss the significance of these results in relation to the regulation of photosynthetic electron transport in vivo.  相似文献   

5.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll ab-protein on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio FvFm increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the FvFm ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I.  相似文献   

6.
M. Hodges  J. Barber 《BBA》1984,767(1):102-107
The effect of Mg2+ concentration and phosphorylation of the light harvesting chlorophyll ab protein on the ability of DBMIB to quench chlorophyll fluorescence of isolated pea thylakoids has been studied. Over a wide range of Mg2+ concentrations (5?0.33 mM), the observed changes in fluorescence yield are mirrored by similar changes in the quenching ability of DBMIB, indicating that the cation-induced phenomenon involves alterations in radiative lifetimes. In contrast, phosphorylation at 10 mM Mg2+ brings about a lowering of the chlorophyll fluorescence yield, while having no effect on the quenching capacity of DBMIB. This result can be interpreted as a phosphorylation-induced decrease in PS II absorption cross-section. At Mg2+ levels between 5 and 1 mM, phosphorylation leads to a change in the quenching of fluorescence by DBMIB, when compared with non-phosphorylated thylakoids. At these cation levels, the degree of DBMIB-induced quenching cannot wholly account for the observed changes in chlorophyll fluorescence due to phosphorylation. It is concluded that the phosphorylation- and Mg2+-induced changes in fluorescence yield are independent but inter-related processes which involve surface charge screening as emphasised by the change in cation sensitivity of the DBMIB quenching before and after phosphorylation.  相似文献   

7.
M.T. Black  C.H. Foyer  P. Horton   《BBA》1984,767(3):557-562
The phosphorylation of thylakoid membrane polypeptides has been investigated in chloroplasts prepared from peas that had been grown under intermittent light and then exposed to between 4 and 48 h of continuous light. At 4 h, when the ratio of the total amount of labelling of a 9 kDa-polypeptide relative to light-harvesting chlorophyll protein (LHCP) polypeptides was much greater than 1, the affinity for ATP was found to be the same (S0.5, approx. 100 μM) for both polypeptides. In contrast, in fully greened chloroplasts, when labelling of LHCP was much greater than that of the 9 kDa-polypeptide, the S0.5 for ATP was 40 μM for LHCP and 500 μM for the 9 kDa-polypeptide. A correlation was observed during development between the affinity for ATP of the 9 kDa-species and its abundance relative to LHCP. It is suggested that these polypeptides compete for phosphorylation by the same protein kinase. Simultaneous assay of the ATP-induced fluorescence decrease at different ATP concentrations revealed a close correlation with LHCP labelling but not with labelling of the 9 kDa-polypeptide. This correlation held irrespective of which polypeptide was the major phosphoprotein.  相似文献   

8.
W.S. Chow  A. Telfer  D.J. Chapman  J. Barber 《BBA》1981,638(1):60-68
By using chlorophyll fluorescence, a study has been made of changes in spillover of excitation energy from Photosystem (PS) II to PS I associated with the State 1–State 2 transition in intact pea and barley leaves and in isolated envelope-free chloroplasts treated with ATP. (1) In pea leaves, illumination with light preferentially absorbed by PS II (Light 2) led to a condition of maximum spillover (state 2) while light preferentially absorbed by PS I induced minimum spillover condition (State 1) as judged from the redox state of Q and low-temperature emission spectra. The State 1–State 2 transitions took several minutes to occur, with the time increasing when the temperature was lowered from 19 to 6°C. (2) In contrast to the wild type, leaves of a chlorophyll b-less mutant barley did not exhibit a State 1–State 2 transition, suggesting the involvement of the light-harvesting chlorophyll ab-protein complex in spillover changes in higher plants. (3) Spillover in isolated pea chloroplasts was increased by treatment with ATP either (a) in Light 2 in the absence of an electron acceptor or (b) in the dark in the presence of NADPH and ferredoxin. These observations can be interpreted in terms of the model that a more reduced state of plastoquinone activates the protein kinase which catalyzes phosphorylation of the light-harvesting chlorophyll ab-protein complex (Allen, J.F., Bennett, J., Steinback, K.E. and Arntzen, C.J. (1981). Nature 291, 25–29). This process was found to be very temperature sensitive. (4) Pea chloroplasts illuminated in the presence of ATP seemed to exhibit a slight decrease in the degree of thylakoid stacking, and an increased intermixing of the two photosystems. (5) The possible mechanism by which protein phosphorylation regulates the State 1–State 2 changes in intact leaves is presented in terms of changes in the spatial relationship of two photosystems resulting from alteration in membrane organization.  相似文献   

9.
A.W.D. Larkum  Jan M. Anderson 《BBA》1982,679(3):410-421
A Photosystem II reaction centre protein complex was extracted from spinach chloroplasts using digitonin. This complex showed (i) high rates of dichloroindophenol and ferricyanide reduction in the presence of suitable donors, (ii) low-temperature fluorescence at 685 nm with a variable shoulder at 695 nm which increased as the complex aggregated due to depletion of digitonin and (iii) four major polypeptides of 47, 39, 31 and 6 kDa on dissociating polyacrylamide gels. The Photosystem II protein complex, together woth the P-700-chlorophylla protein complex and light-harvesting chlorophyll ab-protein complex (LHCP) also isolated using digitonin, were reconstituted with lipids from spinach chloroplasts to form proteoliposomes. The low-temperature (77 K) fluorescence properties of the various proteoliposomes were analysed. The F685F695 ratios of the Photosystem II reaction centre protein complex-liposomes decreased as the lipid to protein ratios were increased. The F681F697 ratios of LHCP-liposomes were found to behave similarly. Light excitation of chlorophyll b at 475 nm stimulated emission from both the Photosystem II protein complex (F685 and F695) and the P-700-chlorophyll a-protein complex (F735) when LHCP was reconstituted with either of these complexes, demonstrating energy transfer between LHCP and PS I or II complexes in liposomes. No evidence was found for energy transfer from the PS II complex to the P-700-chlorophyll a-protein complex reconstituted in the same proteoliposome preparation. Proteoliposome preparations containing all three chlorophyll-protein complexes showed fluorescence emission at 685, 700 and 735 nm.  相似文献   

10.
In intact, uncoupled type B chloroplasts from spinach, added ATP causes a slow light-induced decline (t12 ≈ 3 min) of chlorophyll a fluorescence at room temperature. Fluorescence spectra were recorded after fast cooling to 77 K and normalized with fluorescein as an internal standard. Related to the fluorescence quenching at room temperature, an increase in Photosystem (PS) I fluorescence (F735) and a decrease in PS II fluorescence (F695) were observed in the low-temperature spectra. The change in the F735F695 ratio was abolished by the presence of methyl viologen. Fluorescence induction at 77 K of chloroplasts frozen in the quenched state showed lowered variable (Fv) and initial (F0) fluorescence at 690 nm and an increase in F0 at 735 nm. The results are interpreted as indicating an ATP-dependent change of the initial distribution of excitation energy in favor of PS I, which is controlled by the redox state of the electron-transport chain and, according to current theories, is caused by phosphorylation of the light-harvesting complex.  相似文献   

11.
Dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) is reputed to be a plastoquinone antagonist which prevents the photoreduction of hydrophilic oxidants such as ferredoxin-NADP+. However, we have found that dibromothymoquinone inhibits only a small part of the photoreduction of lipophilic oxidants such as oxidized p-phenylenediamine. Dibromothymoquinone-resistant photoreduction reactions are coupled to phosphorylation, about 0.4 molecules of ATP consistently being formed for every pair of electrons transported. Dibromothymoquinone itself is a lipophilic oxidant which can be photoreduced by chloroplasts, then reoxidized by ferricyanide or oxygen. The electron transport thus catalysed also supports phosphorylation and the Pe2 ratio is again 0.4. It is concluded that there is a site of phosphorylation before the dibromothymoquinone block and another site of phosphorylation after the block. The former site must be associated with electron transfer reactions near Photosystem II, while the latter site is presumably associated with the transfer of electrons from plastoquinone to cytochrome f.  相似文献   

12.
A.G. Gagliano  N.E. Geacintov  J. Breton 《BBA》1977,461(3):460-474
Whole or broken spinach chloroplasts, bacterial chromatosphores and CPI chlorophyll · protein complexes in aqueous suspensions at room temperature can be oriented in externally applied electric fields. The orientation is observed by monitoring the electric field induced linear dichroism (LD). With whole chloroplasts a detectable LD signal is observed using voltages as low as 2–3 V (50 Hz alternating voltage) across an 0.3 cm electrode gap, and nearly complete orientation is observed at fields of 30 V · cm?1. The wavelength dependence of the LD signals using either orienting electric fields (E) alone, or magnetic fields (B) alone, are similar but opposite in sign with E and B pointing in the same direction. The chloroplasts tend to orient in such a way that the membrane planes are parallel to E. The CPI complexes and bacterial chromatophores require much higher electric fields for orientation than whole chloroplasts (for CPI complexes E > 2000 V · cm?1); rectangular, millisecond duration, voltage pulses are utilized for the observation of electric field induced LD spectra in these cases. Oriented CPI complexes exhibit LD maxima of the same sign at 685 and at 440 nm. The oriented chromatophores exhibit an LD spectrum of either positive or negative sign, depending on the wavelength. The mechanisms of the orientation are discussed.  相似文献   

13.
The addition of glucagon (10?6 M) to an incubation mixture containing 32Pi and hepatocytes isolated from livers of rats fed ad libitum results in both a 3-fold increased incorporation of 32P into L-type pyruvate kinase and a decreased catalytic activity. The 32P incorporated into pyruvate kinase was covalently bound to the enzyme as evidenced by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In addition, exogenous cyclic AMP (10?3 M) stimulated the phosphorylation and the suppression of catalytic activity to a similar extent. On the other hand, insulin (10?7 M) had essentially no effect on the incorporation of 32P into pyruvate kinase or on its catalytic activity under the conditions used in this study. These results suggest that phosphorylation of pyruvate kinase invivo is stimulated by glucagon via cyclic AMP and cyclic AMP-dependent protein kinase and that the activity of the enzyme is, at least in part, regulated by a phosphorylation-dephosphorylation mechanism.  相似文献   

14.
Peter Horton  Michael T. Black 《BBA》1983,722(1):214-218
Fluorescence induction curves in chloroplasts phosphorylated by the thylakoid protein kinase activated at low light intensity and high chlorophyll concentration have been measured. At 5 mM Mg2+, phosphorylation did not preferentially quench variable fluorescence. At 1 mM, preferential quenching of variable fluorescence was observed, indicating a second effect of phosphorylation at low Mg2+ (Horton, P. and Black, M.T. (1982) Biochim. Biophys. Acta 680, 22–27). Comparison of the extent of fluorescence decrease and the resulting ratio of variable to maximum fluorescence after phosphorylation and after lowering Mg2+ concentration demonstrated a difference between these two mechanisms of lowering of fluorescence. The significance of these results in terms of how phosphorylation may alter membrane organization is discussed.  相似文献   

15.
Phospholipid-sensitive Ca2+-dependent protein kinase (PL-Ca-PK) was found to be present at a high level in human neutrophils, with its activity localized in the particulate fraction. In contrast, cyclic AMP-dependent protein kinase (A-PK) and cyclic GMP-dependent protein kinase (G-PK), present at lower levels compared to PL-Ca-PK, were localized in the cytosolic fraction. Phosphorylation of several endogenous proteins (mol. wts. 89,000, 38,000, 34,000, 17,000 and 15,000), also localized in the particulate fraction, was stimulated specifically by a combination of phosphatidylserine and Ca2+, whereas no substrate proteins were observed for the calmodulin-sensitive Ca2+-dependent protein kinase system under the same incubation conditions. Although no substrate proteins for G-PK were detected, one substrate (mol. wt. 19,000) for A-PK was observed. Phosphorylation of substrates for PL-Ca-PK, but not that for A-PK and for enzymes independent of Ca2+ or cyclic AMP, was inhibited by a variety of agents, including trifluoperazine, W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide], adriamycin, palmitoylcarnitine, and melittin. The present findings suggest that the phospholipidCa2+-stimulated protein phosphorylation system may be important in the membrane associated functions of human neutrophils.  相似文献   

16.
The light-harvesting chlorophyll ab-protein complexes (LHCP) of spinach, pea, and barley thylakoids apparently contain four nonidentical polypeptide subunits of between 29,000 and 23,000 daltons on highly resolving sodium dodecyl sulfate-polyacrylamide gradient gels. Trypsin treatment of the spinach complex degraded at least the two major subunits by approximately 2000 daltons and resulted in a three-subunit pattern on gels. Proteoliposomes reconstituted with LHCP and the chloroplast diacyl lipids aggregated markedly in the presence of cations but vesicles containing LHCP prepared from trypsin-treated thylakoids did not. Amino acid analysis of native- and trypsin-treated LHCP indicated that the fragment(s) released by trypsin, which is essential for cation-induced stacking of thylakoids, contains lysine and arginine, but not aspartate or glutamate, and is thus cationic. Carboxyl groups on the surface of LHCP were charge neutralized using a water-soluble carbodiimide (1-ethyl-(3-dimethylaminopropyl)carbodiimide) plus [14C]glycine ethyl ester. Only two or three sites were labeled per 26,000-dalton polypeptide equivalent and only a minor fraction of this (22–24%) was located in the surface fragment(s) released by trypsin. Both LHCP and LHCP proteoliposomes, after carboxyl modification, aggregated avidly at low salt concentrations. The findings suggest that exposed anionic groups on the surface of LHCP contribute to an electrostatic repulsive force between membranes which must be attenuated, either by cation binding or chemical neutralization, before membrane-membrane adhesion can occur. In line with this the binding of Mn2+ by LHCP (approximately four Mn2+ bound/26,000-dalton polypeptide equivalent) was sharply decreased after carboxyl modification.  相似文献   

17.
High mobility group (HMG) proteins 14 and 17 of rat C6 glioma cells are phosphorylated invivo on both serine and threonine. In HMG 14 about 60% of the total [32P]phosphate was identified as phosphoserine and 40% as phosphothreonine. In HMG 17, there was 88% phosphoserine and 12% phosphothreonine. Glioma cell nuclear protein kinase NII phosphorylates HMG 14 and 17 invitro on serine as well as threonine and the relative percentages of [32P]phosphoamino acid are similar to those seen invivo. Nuclear protein kinase NI and the type I and II cAMP-dependent protein kinases exhibit only minor phosphorylating activity towards HMG 14 and 17. We conclude that nuclear protein kinase NII is responsible for the phosphorylation of HMG 14 and 17 invivo.  相似文献   

18.
Christoph Giersch 《BBA》1983,725(2):309-319
Amines have been shown recently to stimulate at low concentrations the steady-state rate of photophosphorylation by unbroken chloroplasts (Giersch, C. (1982) Z. Naturforsch. 37c, 242–250). In the present contribution it is demonstrated that not only amines but also the carboxylic ionophores nigericin and monensin at concentrations of 10 and 150 nM, respectively, stimulate the phosphorylation rate. The ATP2e ratio is not decreased upon the addition of nigericin at concentrations that stimulate phosphorylation. Nigericin-induced stimulation is observed only in the presence of sufficient external potassium, indicating that the observed stimulation is unlikely to be a side-effect of the uncoupler but is related to H+-K+ exchange. The proton permeability of the thylakoid membrane is increased and the proton gradient decreased by amounts of nigericin that stimulate phosphorylation. The membrane potential is not affected in the steady state, indicating that the proton-motive force is slightly reduced upon addition of the ionophore. Data on the proton-motive force were related to maximum values of the phosphorylation potential, which was 45 000–50 000 M?1 in the absence and 30 000–35 000 M?1 in the presence of 10 nM nigericin. The observation that the ATP2e ratio is not decreased in the presence of uncoupler-induced proton leakage is suggested to indicate that the thylakoid lumen does not represent a homogeneous phase of constant proton electrochemical potential. The results presented here are in agreement with the chemiosmotic concept as far as energetic aspects are concerned but seem to be at variance with the postulated free mobility of protons inside the thylakoids. A tentative model of uncoupler-induced stimulation of phosphorylation is presented.  相似文献   

19.
Ta-Yan Leong  Jan M. Anderson 《BBA》1983,723(3):391-399
The hypothesis that chloroplasts having different light-saturated rates of photosynthesis will have different proportions of the intrinsic thylakoid complexes engaged in light-harvesting and electron transport (Anderson, J.M. (1982) Mol. Cell. Biochem. 46, 161–172) has been tested. Peas were grown in light regimes which varied in light intensity, quality and time of irradiance, and ranged from sunlight through red to blue-enriched light of very low radiation. The electron-transport capacity at saturating light of Photosystem I and Photosystem II of chloroplasts isolated from light-adapted peas was 2-fold and 5–6-fold lower, respectively, in the lowest radiation compared to sunlight. There was a marked increase in the amount of total chlorophyll associated with the main chlorophyll ab-proteins (LHCP1, LHCP2 and LHCP3) and a 2-fold decrease in the core reaction centre complex of Photosystem II (CP a) as the radiation decreased; the LHCP1–3CP a ratio changed from 3.5 to 9.0. The amount of chlorophyll associated with Photosystem I varied from 34% in sunlight to 27% in the lowest radiation, but the antenna size of Photosystem I was not markedly different; there was a 2-fold decrease in the amount of cytochrome f on a chlorophyll basis, which partly accounted for the decreased electron-transport capacity of Photosystem I. Since the increases or decreases in the levels of each of the components correlated with decreasing radiation, it is clear that the light-adaptation of both light-harvesting and electron-transport components is indeed closely co-ordinated.  相似文献   

20.
The present results show that the catalytic subunit of cyclic AMP-dependent protein kinase phosphorylates the 50 kDa protein of rat liver phospholipid methyltransferase at one single site on a serine residue. Phosphorylation of this site is stimulated 2- to 3-fold by S-adenosylmethionine. S-adenosylmethionine-dependent protein phosphorylation is time- and dose-dependent and occurs at physiological concentrations. S-adenosylhomocysteine has no effect on protein phosphorylation but inhibits S-adenosylmethionine-dependent protein phosphorylation. S-AdenosylmethionineS-adenosylhomocysteine ratios varying from 0 to 5 produce a dose-dependent stimulation of the phosphorylation of the 50 kDa protein. In conclusion, these results show, for the first time, that the ratio S-adenosylmethionineS-adenosylhomocysteine can modulate phosphorylation of a specific protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号