首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.  相似文献   

2.
Lipids of Paramecium   总被引:1,自引:0,他引:1  
This review is the first on the composition and metabolism of Paramecium lipids. This ciliated protozoa is a useful system for studying the structure and function of biomembranes since it can be grown under chemically defined culture conditions in large numbers; much is known about its genetics, membrane electrophysiology, and ultrastructure; and mutants with defective membrane functions are available which are reported to have lipid alterations. Pure preparation of the cell surface ciliary membrane are readily isolated. The organism and its ciliary membrane contain a variety of polar lipids, sterols, and steryl esters. The polar lipids include substantial amounts of ether lipids, sphingolipids, and phosphonolipids. the biosyntheses of fatty acids and specific moieties of complex lipids in this organism are beginning to be examined with promises of elucidating biosynthetic mechanisms that are more difficult to study in other organisms. More information on lipid metabolism is required to identify the bases for the defects in putative lipid/membrane mutants.  相似文献   

3.
Metabolism and control of lipid structure modification   总被引:2,自引:0,他引:2  
The lipid composition characteristic of a particular cellular membrane can become significantly altered, sometimes quite suddenly, when the cell is placed under environmental stress. In the majority of cases examined, the alterations seem to return the membrane's physical state towards that existing prior to imposition of the stress. The compositional changes are often diverse in their nature and also in their site of origin within the cell. Certain modifications, such as changes in the degree of phospholipid acyl chain unsaturation and in the reordering of fatty acid pairing on specific phospholipids, are now recognized as crucial first responses to stress, while others (e.g., fluctuations in relative proportions of different phospholipid classes and in the sterol:phospholipid ratio) develop more slowly and may represent secondary adjustments to the initial lipid changes. The factors directly responsible for modifying membrane lipid composition are generally unknown at the molecular level, but recent advances provide new clues favoring involvement, in some cases, of the ubiquitous mediator Ca2+. In other cases, the physical state of a membrane may directly modulate the activity of lipid-metabolizing enzymes embedded therein.  相似文献   

4.
Lipids are essential metabolites in cells and they fulfil a variety of functions, including structural components of cellular membranes, energy storage, cell signalling, and membrane trafficking. In plants, changes in lipid composition have been observed in diverse responses ranging from abiotic and biotic stress to organogenesis. Knowledge of the lipid composition is an important first step towards understanding the function of lipids in any given biological system. As Brachypodium distachyon is emerging as the model species for temperate grass research, it is therefore fundamentally important to gain insights of its lipid composition. We used HPLC-coupled with tandem mass spectrometry to profile and quantify levels of sphingolipids and glycerophospholipids in shoots and undifferentiated cells in suspension cultures of B. distachyon. A total of 123 lipids belonging to 10 classes were identified and quantified. Our results showed that there are differences in lipid profiles and levels of individual lipid species between shoots and undifferentiated cells in suspension cultures. Additionally, we showed that 4-sphingenine (d18:1??4) is the main unsaturated dihydroxy-long chain base (LCB) in B. distachyon, and we were unable to detect d18:1??8, which is the main unsaturated dihydroxy-LCB in the model dicotyledonous species, Arabidopsis thaliana. This work serves as the first step towards a comprehensive characterization of the B. distachyon lipidome that will complement future biochemical studies.  相似文献   

5.
Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80 mM) showed significant differences in sterol and fatty acid levels. Salinity increased linoleic (18:2) and linolenic (18:3) acids and stigmasterol, but decreased palmitoleic (16:1) and oleic (18:1) acids and sitosterol. Also, the unsaturation index increased with salinity. Salinity increased the expression of aquaporins of the PIP1 and PIP2 subfamilies and the activity of the plasma membrane H+-ATPase. However, there was no effect of NaCl on water permeability (Pf) values of root plasma membrane vesicles, as determined by stopped-flow light scattering. The counteracting changes in lipid composition and aquaporin expression observed in NaCl-treated plants could allow to maintain the membrane permeability to water and a higher H+-ATPase activity, thereby helping to reduce partially the Na+ concentration in the cytoplasm of the cell while maintaining water uptake via cell-to-cell pathways. We propose that the modification of lipid composition could affect membrane stability and the abundance or activity of plasma membrane proteins such as aquaporins or H+-ATPase. This would provide a mechanism for controlling water permeability and for acclimation to salinity stress.  相似文献   

6.
Bacteria need to be able to adapt to sudden changes in their environment, including drastic changes in the surrounding osmolarity. As part of this adaptation, the cells adjust the composition of their cytoplasmic membrane. Recent studies have shown that ubiquinones, lipid soluble molecules involved in cell respiration, are overproduced by bacteria grown in hyperosmotic conditions and it is thus believed that these molecules can provide with osmoprotection. Hereby we explore the mechanisms behind these observations. Liposomes with a lipid headgroup composition mimicking that of the cytoplasmic membrane of E. coli are used as suitable models. The effect of ubiquinone-10 (Q10) on water transport across the membranes is characterized using a custom developed fluorescence-based experimental approach to simultaneously determine the membrane permeability coefficient and estimate the elastic resistance of the membrane towards deformation. It is shown that both parameters are affected by the presence of ubiquinone-10. Solanesol, a molecule similar to Q10 but lacking the quinone headgroup, also provides with osmoprotection although it only improves the resistance of the membrane against deformation. The fluorescence experiments are complemented by cryogenic transmission electron microscopy studies showing that the E. coli membrane mimics tend to flatten into spheroid oblate structures when osmotically stressed, suggesting the possibility of lipid segregation. In agreement with its proposed osmoprotective role, the flattening process is hindered by the presence of Q10.  相似文献   

7.
Lipid rafts display a lateral heterogeneity forming membrane microdomains that hold a fundamental role on biological membranes and are indispensable to physiological functions of cells. Oxidative stress in cellular environments may cause lipid oxidation, changing membrane composition and organization, thus implying in effects in cell signaling and even loss of homeostasis. The individual contribution of oxidized lipid species to the formation or disruption of lipid rafts in membranes still remains unknown. Here, we investigate the role of different structures of oxidized phospholipids on rafts microdomains by carefully controlling the membrane composition. Our experimental approach based on fluorescence microscopy of giant unilamellar vesicles (GUV) enables the direct visualization of the impact of hydroperoxidized POPC lipid (referred to as POPCOOH) and shortened chain lipid PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine) on phase separation. We found that the molecular structure of oxidized lipid is of paramount importance on lipid mixing and/or demixing. The hydrophobic mismatch promoted by POPCOOH coupled to its cylindrical molecular shape favor microdomains formation. In contrast, the conical shape of PazePC causes disarrangement of lipid 2D organized platforms. Our findings contribute to better unraveling how oxidized phospholipids can trigger formation or disruption of lipid rafts. As a consequence, phospholipid oxidation may indirectly affect association or dissociation of key biomolecules in the rafts thus altering cell signaling and homeostasis.  相似文献   

8.
The mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is unknown. We posit that such duality is determined by both the protein sequence and the membrane lipid composition wherein a spatial or temporal change in the latter can result in a post-assembly change in protein structure and function. To investigate whether co-existence of multiple topological conformers is dependent on the membrane lipid composition, we determined the topological organization of lactose permease in an Escherichia coli model cell system in which phosphatidylethanolamine membrane content can be systematically varied. At intermediate levels of phosphatidylethanolamine a mixture of native and topologically mis-oriented conformers co-existed. There was no threshold level of phosphatidylethanolamine determining a sharp transition from one conformer to the other. Co-existing conformers were not in rapid equilibrium at a static lipid composition indicating that duality of topology is established during an early folding step. Depletion of intermediate levels of phosphatidylethanolamine after final protein assembly resulted in complete mis-orientation of the native conformer. Combined with previous results, such topological dynamics are reversible in both directions. We propose a thermodynamically based model for how lipid-protein interactions can result in a mixed topological organization and how changes in lipid composition can result in changes in the ratio of topologically distinct conformers of proteins. These observations demonstrate a potential lipid-dependent biological switch for generating dynamic structural and functional heterogeneity for a protein within the same membrane or between different membranes in more complex eukaryotic cells.  相似文献   

9.
Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A2 and C). A phospholipase C–diacylglycerol lipase–monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.  相似文献   

10.
11.
Fluorescence anisotropy and average fluorescence lifetime of diphenylhexatriene were measured in artificial lipid membrane vesicles. Within the temperature range investigated (15–52°C) both parameters correlate and can be used interchangeably to measure membrane fluidity. Fluorescence anisotropy of DPH in membrane vesicles of cilia from the protozoan Paramecium tetraurelia decreased slightly from 5 to 37°C, yet, no phase transition was observed. An estimated flow activation energy of approx. 2 kcal/mol indicated that the ciliary membrane is very rigid and not readily susceptible to environmental stimuli. The ciliary membrane contains two domains of different membrane fluidity as indicated by two distinct fluorescence lifetimes of diphenylhexatriene of 7.9 and 12.4 ns, respectively. Ca2+ flux into ciliary membrane vesicles of Paramecium as measured with the Ca2+ indicator dye arsenazo III showed a nonlinear temperature dependency from 5 to 35°C with a minimum around 15°C and increasing flux rates at higher and lower temperatures. The fraction of vesicles permeable for Ca2+ remained unaffected by temperature. The differences in temperature dependency of Ca2+ conductance and membrane fluidity indicate that the Ca2+ permeability of the ciliary membrane is a membrane property which is not directly affected by the fluidity of its lipid environment.  相似文献   

12.
13.
The proteins and lipids of the scallop gill ciliary membrane may be reassociated through several cycles of detergent solubilization, detergent removal, and freeze-thaw, without significant change in overall protein composition. Membrane proteins and lipids reassociate to form vesicles of uniform, discrete density classes under a variety of reassociation conditions involving detergent removal and concentration. Freed of the solubilizing detergent during equilibrium centrifugation, a protein-lipid complex equilibrates to a position on a sucrose density gradient characteristic of the original membrane density. When axonemal tubulin is solubilized by dialysis, mixed with 2:1 lecithin/cholesterol dissolved in Nonidet P-40, freed of detergent, and reconstituted by freeze-thaw, vesicles of a density essentially equal to pure lipid result. If the lipid fraction is derived through chloroform-methanol extraction of natural ciliary membranes, a moderate increase in density occurs upon reconstitution, but the protein is adsorbed and most is removed by a simple low ionic strength wash, in contrast to vesicles reconstituted from membrane proteins where even high salt extraction causes no loss of protein. The proteins of the ciliary membrane dissolve with constant composition, regardless of the type, concentration, or efficiency of detergent. Analytical ultracentrifugation demonstrates that monodisperse mixed micelles form at high detergent concentrations, but that membranes are dispersed to large sedimentable aggregates by Nonidet P-40 even at several times the critical micelle concentration, which suggests reasons for the efficacy of certain detergent for the production of ATP-reactivatable cell models. In extracts freed of detergent, structured polydisperse particles, but not membrane vesicles, are seen in negative staining; vesicles form upon concentration of the extract. Membrane tubulin is not in a form that will freely undergo electrophoresis, even in the presence of detergent above the critical micelle concentration. All chromatographic attempts to separate membrane tubulin from other membrane proteins have failed; lipid and protein are excluded together by gel filtration in the presence of high concentrations of detergent. These observations support the idea that a relatively stable lipid-protein complex exists in the ciliary membrane and that in this complex membrane tubulin is tightly associated with lipids and with a number of other proteins.  相似文献   

14.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane is the first target to be attacked by the accumulated ethanol. In such a prominent position, S. cerevisiae cell membrane could reversely provide protection through changing fluidity or elasticity secondary to remodeled membrane components or structure during the fermentation process. However, there is yet to be a direct observation of the real effect of the membrane compositional change. In this study, atomic force microscope-based strategy was performed to determine Young's modulus of S. cerevisiae to directly clarify ethanol stress-associated changes and roles of S. cerevisiae cell membrane fluidity and elasticity. Cell survival rate decreased while the cell swelling rate and membrane permeability increased as ethanol concentration increased from 0% to 20% v/v. Young's modulus decreased continuously from 3.76 MPa to 1.53 MPa while ethanol stress increased from 0% to 20% v/v, indicating that ethanol stress induced the S. cerevisiae membrane fluidity and elasticity changes. Combined with the fact that membrane composition varies under ethanol stress, to some extent, this could be considered as a forced defensive act to the ethanol stress by S. cerevisiae cells. On the other hand, the ethanol stress induced loosening of cell membrane also caused S. cerevisiae cell to proactively remodel membrane to make cell membrane more agreeable to the increase of environmental threat. Increased ethanol stress made S. cerevisiae cell membrane more fluidized and elastic, and eventually further facilitated yeast cell’s survival.  相似文献   

15.
Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo.  相似文献   

16.
Membrane lipid composition and cellular function   总被引:31,自引:0,他引:31  
Membrane fatty acid composition, phospholipid composition, and cholesterol content can be modified in many different kinds of intact mammalian cells. The modifications are extensive enough to alter membrane fluidity and affect a number of cellular functions, including carrier-mediated transport, the properties of certain membrane-bound enzymes, binding to the insulin and opiate receptors, phagocytosis, endocytosis, depolarization-dependent exocytosis, immunologic and chemotherapeutic cytotoxicity, prostaglandin production, and cell growth. The effects of lipid modification on cellular function are very complex. They often vary from one type of cell to another, and they do not exert a uniform effect on all processes in a single cell line. Therefore, it is not yet possible to make any generalizations or to predict how a given system will respond to a particular type of lipid modification. Many of the functional responses probably are caused directly by the membrane lipid structural changes, which affect either bulk lipid fluidity or specific lipid domains. The conformation or quaternary structures of certain transporters, receptors, and enzymes probably are sensitive to changes in the structure of their lipid microenvironment, leading to changes in activity. Prostaglandin production is modulated by the availability of substrate fatty acids stored in the membrane phospholipids, but the underlying chemical mechanism still involves a change in membrane lipid structure. While this is the most likely mechanism, the possibility that the membrane lipid compositional change is an independent event that occurs concurrently but is not causally related to the functional perturbations also must be considered.  相似文献   

17.
The lipid composition of the extremely halophilic archaeon Haloquadratum walsbyi was investigated by thin-layer chromatography and electrospray ionization-mass spectrometry. The analysis of neutral lipids showed the presence of vitamin MK-8, squalene, carotene, bacterioruberin and several retinal isomers. The major polar lipids were phosphatidylglycerophosphate methyl ester, phosphatidylglycerosulfate, phosphatidylglycerol and sulfated diglycosyl diether lipid. Among cardiolipins, the tetra-phytanyl or dimeric phospholipids, only traces of bisphosphatidylglycerol were detected. When the cells were exposed to hypotonic medium, no changes in the membrane lipid composition occurred. Distinguishing it from other extreme halophiles of the Halobacteriaceae family, the osmotic stress did not induce the neo-synthesis of cardiolipins in H. walsbyi. The difference may depend on the three-laminar structure of the cell wall, which differs significantly from that of other Haloarchaea.  相似文献   

18.
T Kumazawa  T Nomura  K Kurihara 《Biochemistry》1988,27(4):1239-1244
Various bitter substances were found to depolarize liposomes. The results obtained are as follows: (1) Changes in the membrane potential of azolectin liposomes in response to various bitter substances were monitored by measuring changes in the fluorescence intensity of 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. All the bitter substances examined increased the fluorescence intensity of the liposome-dye suspension, which indicates that the substances depolarize the liposomes. There existed a good correlation between the minimum concentrations of the bitter substances to depolarize the liposomes and the taste thresholds in humans. (2) The effects of changed lipid composition of liposomes on the responses to various bitter substances vary greatly among bitter substances, suggesting that the receptor sites for bitter substances are multiple. The responses to N-C=S substances and sucrose octaacetate especially greatly depended on the lipid composition; these compounds depolarized only liposomes having certain lipid composition, while no or hyperpolarizing responses to these compounds were observed in other liposomes examined. This suggested that the difference in "taster" and "nontaster" for these substances can be explained in terms of difference in the lipid composition of taste receptor membranes. (3) It was confirmed that the membrane potential of the planar lipid bilayer is changed in response to bitter substances. The membrane potential changes in the planar lipid bilayer as well as in liposomes in response to the bitter substances occurred under the condition that there is no ion gradient across the membranes. These results suggested that the membrane potential changes in response to bitter substances stem from the phase boundary potential changes induced by adsorption of the substances on the hydrophobic region of the membranes.  相似文献   

19.
To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane’s phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-β)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.

In response to heat, ectotherms exhibit an adaptive response characterized by changes in membrane fluidity. This study in the nematode Caenorhabditis elegans shows that neuronal HSF-1 is critical for this remodeling, suggesting a neuronal thermostat-based mechanism that can non-cell-autonomously coordinate the animal’s response to heat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号