首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The presence of tryptophan residues as intrinsic fluorophores in most proteins makes them an obvious choice for fluorescence spectroscopic analyses of such proteins. Membrane proteins have been reported to have a significantly higher tryptophan content than soluble proteins. The role of tryptophan residues in the structure and function of membrane proteins has attracted a lot of attention. Tryptophan residues in membrane proteins and peptides are believed to be distributed asymmetrically toward the interfacial region. Tryptophan octyl ester (TOE) is an important model for membrane-bound tryptophan residues. We have characterized this molecule as a fluorescent membrane probe in terms of its ionization, partitioning, and motional characteristics in unilamellar vesicles of dioleoylphosphatidylcholine. The ionization property of this molecule in model membranes has been studied by utilizing its pH-dependent fluorescence characteristics. Analysis of pH-dependent fluorescence intensity and emission maximum shows that deprotonation of the alpha-amino group of TOE occurs with an apparent pKa of approximately 7.5 in the membrane. The fluorescence lifetime of membrane-bound TOE also shows pH dependence. The fluorescence lifetimes of TOE have been interpreted by using the rotamer model for the fluorescence decay of tryptophan. Membrane/water partition coefficients of TOE were measured in both its protonated and deprotonated forms. No appreciable difference was found in its partitioning behavior with ionization. Analysis of fluorescence polarization of TOE as a function of pH showed that there is a decrease in polarization with increasing pH, implying more rotational freedom on deprotonation. This is further supported by pH-dependent red edge excitation shift and the apparent rotational correlation time of membrane-bound TOE. TOE should prove useful in monitoring the organization and dynamics of tryptophan residues incorporated into membranes.  相似文献   

2.
Liu R  Siemiarczuk A  Sharom FJ 《Biochemistry》2000,39(48):14927-14938
P-glycoprotein is a member of the ATP binding cassette family of membrane proteins, and acts as an ATP-driven efflux pump for a diverse group of hydrophobic drugs, natural products, and peptides. The side chains of aromatic amino acids have been proposed to play an important role in recognition and binding of substrates by P-glycoprotein. Steady-state and lifetime fluorescence techniques were used to probe the environment of the 11 tryptophan residues within purified functional P-glycoprotein, and their response to binding of nucleotides and substrates. The emission spectrum of P-glycoprotein indicated that these residues are present in a relatively nonpolar environment, and time-resolved experiments showed the existence of at least two lifetimes. Quenching studies with acrylamide and iodide indicated that those tryptophan residues predominantly contributing to fluorescence emission are buried within the protein structure. Only small differences in Stern-Volmer quenching constants were noted on binding of nucleotides and drugs, arguing against large changes in tryptophan accessibility following substrate binding. P-glycoprotein fluorescence was highly quenched on binding of fluorescent nucleotides, and moderately quenched by ATP, ADP, and AMP-PNP, suggesting that the site for nucleotide binding is located relatively close to tryptophan residues. Drugs, modulators, hydrophobic peptides, and nucleotides quenched the fluorescence of P-glycoprotein in a saturable fashion, allowing estimation of dissociation constants. Many compounds exhibited biphasic quenching, suggesting the existence of multiple drug binding sites. The quenching observed for many substrates was attributable largely to resonance energy transfer, indicating that these compounds may be located close to tryptophan residues within, or adjacent to, the membrane-bound domains. Thus, the regions of P-glycoprotein involved in nucleotide and drug binding appear to be packed together compactly, which would facilitate coupling of ATP hydrolysis to drug transport.  相似文献   

3.
One subtype of the pheromone binding proteins of the silkmoth Antheraea polyphemus (ApolPBP1) has been analysed exploiting the two endogenous tryptophan residues as fluorescent probe. The intrinsic fluorescence exhibited a rather narrow spectrum with a maximum at 336 nm. Site-directed mutagenesis experiments revealed that one of the tryptophan residues (Trp37) is located in a hydrophobic environment whereas Trp127 is more solvent exposed, as was predicted modeling the ApolPBP1 sequence on the proposed structure of the Bombyx mori pheromone binding protein. Monitoring the interaction of ApolPBP1 as well as its Trp mutants with the three species-specific pheromone compounds by recording the endogenous fluorescence emission revealed profound differences; whereas (E6,Z11)-hexadecadienal induced a dose-dependent quenching of the fluorescence, both (E6,Z11)-hexadecadienyl-1-acetate and (E4,Z9)-tetradecadienyl-1-acetate elicited an augmentation of the endogenous fluorescence. These data indicate that although ApolPBP1 can bind all three pheromones, there are substantial differences concerning their interaction with the protein, which may have important functional implications.  相似文献   

4.
J Ellis  I A Murray  W V Shaw 《Biochemistry》1991,30(44):10799-10805
Replacement by tyrosine or phenylalanine was used to assign the additive contributions of each of the three tryptophan residues of chloramphenicol acetyltransferase (CAT) to its intrinsic fluorescence on excitation at 295 nm. During the assessment of the fluorescence responses of the wild-type enzyme to the binding of ligands, it was found that the overlapping absorption spectra of chloramphenicol and tryptophan, with an attendant inner filter effect, required the use of a displacement technique involving an alternative substrate (the p-cyano analogue of chloramphenicol) without significant absorption at 295 nm. By the use of two-Trp, one-Trp, and Trp-less variants, in combination with this displacement technique, it was possible to demonstrate that Trp-86 and Trp-152 are involved in the fluorescence quenching associated with the binding of chloramphenicol, most likely via nonradiative energy transfer from these residues to the bound substrate. Trp-152 is mainly responsible for the fluorescence enhancement accompanying the binding of acetyl-CoA (and CoA) through proximity effects and solvent exclusion on substrate association.  相似文献   

5.
The active site of an apoptotic enzyme caspase-3 was characterized by measuring the intrinsic fluorescence of two tryptophan residues. Temperature dependence of the intrinsic fluorescence, the energy homotransfer between the tryptophan residues, and the fluorescence quenching by tetrapeptide inhibitors were investigated by the fluorescence lifetime measurements. It has been observed that the fluorescence lifetimes of caspase-3 in complex with inhibitors were significantly shortened by the electron transfer process.  相似文献   

6.
7.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The fluorescence and phosphorescence emission of wheat germ agglutinin are reported. Fluorescent tryptophan residues of wheat germ agglutinin are found highly exposed to solvent: fluorescence quenching induced by temperature fits with a single Arrhenius critical energy close to that of tryptophan in solution; the whole fluorescence emission is susceptible to iodide ion quenching and data reveal the homogeneity of fluorescence arising from only one type of tryptophan exposition. Energy transfers are analyzed at singlet and triplet state level. Tyrosine fluorescence at 25 degrees C is very weak. Results obtained from the relative excitation fluorescence quantum yield and from intrinsic fluorescence polarization show that a large amount of energy absorbed by tyrosine at 280 nm is transferred to tryptophan residues. However, tyrosine fluorescence is highly increased at 70 degrees C although disulfide bridges are not reduced. The phosphorescence spectrum at 77 K in 50% ethylene glycol is finely structured with several resolved vibrational bands at 405, 432 and 455 nm. Phosphorescence decay can be fitted with a single exponential. Lifetime is independent of excitation wave-length. Its value is very close to that of free tryptophan. Influence of tri-N-acetyl-chitotriose binding on luminescence properties are investigated. Results are analyzed in terms of steric tryptophan-ligand relationships. It is shown that all the fluorescent chromophores are concerned by the ligand binding but all fluorescence emission is still susceptible to iodide ion quenching. There is no change induced in energy transfer at the singlet state level and no modification in triplet state population.  相似文献   

9.
—The encephalitogenic basic protein has been isolated from the myelin sheath of ox brain white matter and the purity and amino acid composition have been verified. The intrinsic fluorescence characteristics of the purified basic protein have been determined and the results interpreted in terms of current ideas on the structure of the protein. Fluorescence data obtained from the basic protein in aqueous solution indicate that the tyrosine and tryptophan residues are largely exposed to the solvent and that resonance energy transfer from tyrosine to tryptophan is very inefficient. Denaturing conditions in 8 m -urea have little effect on the fluorescence properties of the protein. The ionic detergent, sodium dodecyl sulphate, interacts with the basic protein and alters the fluorescence properties in a manner which indicates that the tryptophan residue is in the hydrocarbon chain region of the detergent while the local positive charge around the tyrosine residues is neutralized by the negatively charged sulphate head-groups. The fluorescence results suggest that the basic protein can be used as a natural, non-perturbing probe which will report on its environment after it has reacted with other membrane components.  相似文献   

10.
T Fernando  C A Royer 《Biochemistry》1992,31(29):6683-6691
The unfolding properties of the trp repressor of Escherichia coli have been studied using a number of different time-resolved and steady-state fluorescence approaches. Denaturation by urea was monitored by the average fluorescence emission energy of the intrinsic tryptophan residues of the repressor. These data were consistent with a two-state transition from dimer to unfolded monomer with a free energy of unfolding of 19.2 kcal/mol. The frequency response profiles of the fluorescence emission brought to light subtle urea-induced modifications of the intrinsic tryptophan decay parameters both preceding and following the main unfolding transition. The increase of lifetime induced by urea required higher concentrations of urea than the increase in the total intensity described by Gittelman and Matthews [(1990) Biochemistry 29, 7011]. This indicates that the intensity increase has both dynamic and static origins. To assess the effect of tryptophan binding upon repressor stability, and to determine whether repressor oligomerization would be detectable in an unfolding experiment, we examined denaturation profiles of repressor labeled with the long-lived fluorescence probe 5-(dimethylamino)naphthalene-1-sulfonyl (DNS), by monitoring the average rotational correlation time of the probe. These experiments revealed a protein concentration dependent transition at low urea concentrations. This transition was promoted by tryptophan binding. We ascribe this transition to urea-induced dissociation of repressor tetramers. The main unfolding transition of the dimer to unfolded monomer was also observable using this technique, and the free energies associated with this transition were 18.3 kcal/mol in the absence of tryptophan and 24.1 kcal/mol in its presence, demonstrating that co-repressor binding stabilizes the repressor dimer against denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Homogeneous noncompetitive assay of a protein in biological samples based on Förster-resonance-energy-transfer (FRET) was proposed by using its tryptophan residues as intrinsic donors and its specific fluorescent ligand as the FRET acceptor that was defined as an analytical FRET probe. Conjugate of a suitable fluorophore, which should have an excitation peak around 340 nm but an excitation valley around 280 nm, with a moiety binding to a protein of interest gave an analytical FRET probe to the protein. To test this method, N-biotinyl-N′-(1-naphthyl)-ethylenediamine (BNEDA) was used as an analytical FRET probe for homogeneous noncompetitive assay of streptavidin (SAV). The occurrence of FRET between the bound BNEDA and tryptophan residues was supported by the modeled geometry of the complex. By excitation at 280 nm, free BNEDA produced negligible fluorescence at 430 nm, but the bound BNEDA produced much higher stable fluorescence at 430 nm after 2 min of binding reaction. The competitive binding between BNEDA and biotin gave the dissociation constant of (16 ± 3) fM for BNEDA (n = 3). By excitation at 280 nm, fluorescence at 430 nm of reaction mixtures containing 32.0 nM BNEDA responded linearly to SAV subunit concentrations ranging from 0.40 to 30.0 nM with the desirable resistance to common interferences in biological samples. Therefore, by using tryptophan residue(s) in a protein of interest as intrinsic donor(s) and its fluorescent ligand as the corresponding FRET acceptor, this homogeneous noncompetitive assay of the protein in biological samples was effective and advantageous.  相似文献   

12.
Fourteen 14-mer peptides corresponding to a consensus sequence of metal-binding loops from proteins of the calmodulin family were synthesized. The effect of varying both the position in the binding loop, and the type of aromatic side chains as energy donors for enhancement of terbium luminescence, was studied. It was concluded that tryptophan in loop position 7 gave optimal luminescence enhancement, and that the additional inclusion of a tyrosine in the loop at positions 2 or 4 could further boost emission from the bound terbium. In all further cases energy transfer from aromatic residues at positions other than 7 was markedly less efficient. These results suggest that the peptides assume a configuration which allows a hexadentate ligand structure around the bound terbium ion. This is consistent with a Dexter-type electron exchange model of energy transfer.  相似文献   

13.
The binding of bilirubin with adult of fetal human serum albumin has been studied by steady-state fluorescence emission spectroscopy. The 1:1 complex between bilirubin and the two albumin samples shows very similar fluorescence properties, as well as essentially identical accessibility of the protein-bound bilirubin to fluorescence quenchers added to the aqueous medium. The intramolecular distance between bilirubin and the single tryptophyl residue can be estimated to be 2.4 +/- 0.2 nm for both proteins by singlet-singlet energy transfer. These findings suggest that fetal and adult human serum albumin have a very similar three-dimensional structure; the different binding capacity for bilirubin displayed by the two proteins is likely to be the consequence of small differences in the physico-chemical properties of some amino acid residues close to the bilirubin binding site, as indicated by pH-titration experiments of the intrinsic albumin fluorescence.  相似文献   

14.
Mutants of the Tn10-encoded Tet repressor containing single or no tryptophan residues were constructed by oligonucleotide-directed mutagenesis. The Trp-75 to Phe exchange reduces the dissociation rate of the complex with the inducer tetracycline by a factor of 2. The Trp-43 to Phe exchange has no effect on inducer binding. The fluorescence emission spectra of both tryptophan residues are quenched to a different extent by binding of tetracycline: Trp-75 is quenched to zero and Trp-43 to only 50%. It is concluded that Trp-75 is in the vicinity of the inducer binding site. The different fluorescence emission spectra of both tryptophan residues depend on the native structure of Tet repressor. Quenching studies with iodide indicate that the DNA binding motif is solvent exposed in free repressor and moves towards the interior of the protein upon inducer binding. The inducer binding site is in the interior of the protein. The fluorescence of tetracycline is enhanced upon binding to Tet repressor. The excitation at 280 nm results mainly from the change in environment and in part from energy transfer from tryptophan to the drug.  相似文献   

15.
The binding of Thermomyces lanuginosa lipase and its mutants [TLL(S146A), TLL(W89L), TLL(W117F, W221H, W260H)] to the mixed micelles of cis-parinaric acid/sodium taurodeoxycholate at pH 5.0 led to the quenching of the intrinsic tryptophan fluorescence emission (300-380 nm) and to a simultaneous increase in the cis-parinaric acid fluorescence emission (380-500 nm). These findings were used to characterize the Thermomyces lanuginosa lipase/cis-parinaric acid interactions occurring in the presence of sodium taurodeoxycholate.The fluorescence resonance energy transfer and Stern-Volmer quenching constant values obtained were correlated with the accessibility of the tryptophan residues to the cis-parinaric acid and with the lid opening ability of Thermomyces lanuginosa lipase (and its mutants). TLL(S146A) was found to have the highest fluorescence resonance energy transfer. In addition, a TLL(S146A)/oleic acid complex was crystallised and its three-dimensional structure was solved. Surprisingly, two possible binding modes (sn-1 and antisn1) were found to exist between oleic acid and the catalytic cleft of the open conformation of TLL(S146A). Both binding modes involved an interaction with tryptophan 89 of the lipase lid, in agreement with fluorescence resonance energy transfer experiments.As a consequence, we concluded that TLL(S146A) mutant is not an appropriate substitute for the wild-type Thermomyces lanuginosa lipase for mimicking the interaction between the wild-type enzyme and lipids.  相似文献   

16.
W Y Lin  C D Eads  J J Villafranca 《Biochemistry》1991,30(14):3421-3426
TNS, 2-p-toluidinylnaphthalene-6-sulfonate, has been used as a fluorescent probe to determine the binding constants of metal ions to the two binding sites of Escherichia coli glutamine synthetase (GS). TNS fluorescence is enhanced dramatically when bound to proteins due to its high quantum yield resulting from its interactions with hydrophobic regions in proteins. The fluorescence energy transfer from a hydrophobic tryptophan residue of GS to TNS has been detected as an excitation band centered at 280 nm. Therefore, TNS is believed to be bound to a hydrophobic site on the GS surface other than the active site and is located near a hydrophobic Trp residue of GS. GS binds lanthanide ions [Ln(III)] more tightly than either Mn(II) or Mg(II), and the binding constants of several lanthanide ions were determined to be in the range (2.1-4.6) x 10(10) and (1.4-3.0) x 10(8) M-1 to the two metal binding sites of GS, respectively. The intermetal distances between the two metal binding sites of GS were also determined by measuring the efficiencies of energy transfer from Tb(III) to other Ln(III) ions. The intermetal distances of Tb(III)-Ho(III) and Tb(III)-Nd(III) were 7.9 and 6.8 A, respectively.  相似文献   

17.
Scalley ML  Nauli S  Gladwin ST  Baker D 《Biochemistry》1999,38(48):15927-15935
We use a broad array of biophysical methods to probe the extent of structure and time scale of structural transitions in the protein L denatured state ensemble. Measurement of amide proton exchange protection during the first several milliseconds following initiation of refolding in 0.4 M sodium sulfate revealed weak protection in the first beta-hairpin and helix. A tryptophan residue was introduced into the first beta-hairpin to probe the extent of structure formation in this part of the protein; the intrinsic fluorescence of this tryptophan was found to deviate from that expected given its local sequence context in 2-3 M guanidine, suggesting some partial ordering of this region in the unfolded state ensemble. To further probe this partial ordering, dansyl groups were introduced via cysteine residues at three sites in the protein. It was found that fluorescence energy transfer from the introduced tryptophan to the dansyl groups decreased dramatically upon unfolding. Stopped-flow fluorescence studies showed that the recovery of dansyl fluorescence upon refolding occurred on a submillisecond time scale. To probe the interactions responsible for the residual structure observed in the denatured state ensemble, the conformation of a peptide corresponding to the first beta-hairpin and helix of protein L was studied using circular dichroism spectroscopy and compared to that of full-length protein L and previously characterized peptides corresponding to the isolated helix and second beta-hairpin.  相似文献   

18.
The tryptophan analog, 5-hydroxytryptophan (5HW), has a significant absorbance between 310–320 nm, which allows it to act as an exclusive fluorescence probe in protein mixtures containing a large number of tryptophan residues. Here for the first time a method is reported for the biosynthetic incorporation of 5HW into an expressed protein, the Y57W mutant of the Ca2+ binding protein, oncomodulin. Fluorescence anisotropy and time-resolved fluorescence decay measurements of the interaction between anti-oncomodulin antibodies and the 5HW-incorporated oncomodulin conveniently provide evidence of complex formation and epitope identification that could not be obtained with the natural amino acid. This report demonstrates the significant potential for the use or 5HW as an intrinsic probe in the study of structure and dynamics of protein—protein interactions.  相似文献   

19.
The binding of adriamycin and its two analogues 4'-epidoxorubicin and 4'-deoxydoxorubicin to synthetic and mitochondrial membranes was investigated by using resonance energy transfer between these drugs and two fluorescent probes, diphenylhexatriene (DPH) and tryptophan. The fluorescence of the lipid probe DPH in both types of membranes and tryptophan in mitochondria was quenched by the anthracyclines in a dose-dependent manner. In sonicated, fluid-phase dimyristoyl-L-alpha-phosphatidylcholine (DMPC) vesicles, the half-quenching concentration (K50) of adriamycin was 17 +/- 1 microM, whereas in bilayers containing a 1:1 molar ratio of DMPC to cardiolipin (CL), the value was 8 +/- 1 microM. In liver and heart mitochondria, the K50 values were 8 +/- 2 and 11 +/- 3 microM, respectively. Similar results were obtained for the other two drugs. Replacing a nonionic with an ionic medium or decreasing the pH from pH 7.7 to pH 6.9 increased the K50 value of adriamycin for DPH in DMPC/CL (1:1 molar) liposomes and in mitochondria. Higher concentrations of anthracycline were needed to quench the fluorescence of tryptophan. The results suggest that these drugs interact with both phospholipids and proteins and that the cardiotoxicity of adriamycin is unlikely to be related to the amount of drug bound to heart mitochondria.  相似文献   

20.
Khrapunov S  Pastor N  Brenowitz M 《Biochemistry》2002,41(30):9559-9571
The intrinsic fluorescence of the six tyrosines located within the C-terminal domain of the Saccharomyces cerevisiae TATA binding protein (TBP) and the single tryptophan located in the N-terminal domain has been used to separately probe the structural changes associated with each domain upon DNA binding or oligomerization of the protein. The unusually short-wavelength maximum of TBP fluorescence is shown to reflect the unusually high quantum yield of the tyrosine residues in TBP and not to result from unusual tryptophan fluorescence. The anisotropy of the C-terminal tyrosines is very high in monomeric, octameric, and DNA-complexed TBP and comparable to that observed in much larger proteins. The tyrosines have low accessibility to an external fluorescence quencher. The anisotropy of the single tryptophan located within the N-terminal domain of TBP is much lower than that of the tyrosines and is accessible to an external fluorescence quencher. Tyrosine, but not tryptophan, fluorescence is quenched upon TBP-DNA complex formation. Only the tryptophan fluorescence is shifted to longer wavelengths in the protein-DNA complex. In addition, the accessibility of the tryptophan residue to the external quencher and the internal motion of the tryptophan residue increase upon DNA binding by TBP. These results show the following: (i) The structure of the C-terminal domain structure is unchanged upon TBP oligomerization, in contrast to the N-terminal domain [Daugherty, M. A., Brenowitz, M., and Fried, M. G. (2000) Biochemistry 39, 4869-4880]. (ii) The environment of the tyrosine residues within the C-terminal domain of TBP is structurally rigid and unaffected by oligomerization or DNA binding. (iii) The C-terminal domain of TBP is uniformly in close proximity to bound DNA. (iv) While the N-terminal domain unfolds upon DNA binding by TBP, its increased correlation time shows that the overall structure of the protein is more rigid when complexed to DNA. A model that reconciles these results is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号