首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mosquitocidal bacterium Bacillus thuringiensis subsp. israelensis (Bti) produces four major endotoxin proteins, Cry4A, Cry4B, Cry11A, and Cyt1A, and has toxicity in the range of many synthetic chemical insecticides. Cry11B, which occurs naturally in B. thuringiensis subsp. jegathesan, is a close relative of Cry11A, but is approximately 10-fold as toxic to Culex quinquefasciatus. To determine whether the addition of Cry11B to Bti would improve its toxicity, we produced this protein in Bti. High levels of Cry11B synthesis were obtained by expression of the cry11B gene under the control of cyt1A promoters and the STAB-SD sequence. This construct was cloned into the shuttle vector pHT3101, yielding the derivative plasmid pPFT11Bs, which was then transformed by electroporation into acrystalliferous (4Q7) and crystalliferous (IPS-82) strains of Bti. Synthesis of Cry11B in Bti 4Q7 produced crystals approximately 50% larger than those produced with its natural promoters without STAB-SD. However, less Cry11B was produced per unit culture medium with this construct than with the wild-type construct, apparently because the latter construct produced more cells per unit medium. Nevertheless, the Bti IPS-82 strain that produced Cry11B with pPFT11Bs was twice as toxic as the parental IPS-82 strain (LC(50) = 1.4 ng/ml versus 3.3 ng/ml, respectively) to fourth instars of C. quinquefasciatus. Against fourth instars of Aedes aegypti, no statistically significant difference between parental Bti IPS-82 (LC(50) = 4.7 ng/ml) and the Bti IPS-82 recombinant producing Cry11B (LC(50) = 3.5 ng/ml) was found in toxicity.  相似文献   

2.
Bacillus thuringiensis subsp. israelensis (Bti) produces at least four different crystal proteins that are specifically toxic to different mosquito species and that belong to two non-related family of toxins, Cry and Cyt named Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa. Cyt1Aa enhances the activity of Cry4Aa, Cry4Ba or Cry11Aa and overcomes resistance of Culex quinquefasciatus populations resistant to Cry11Aa, Cry4Aa or Cry4Ba. Cyt1Aa synergized Cry11Aa by their specific interaction since single point mutants on both Cyt1Aa and Cry11Aa that affected their binding interaction affected their synergistic insecticidal activity. In this work we show that Cyt1Aa loop β6-αE K198A, E204A and β7 K225A mutants affected binding and synergism with Cry4Ba. In addition, site directed mutagenesis showed that Cry4Ba domain II loop α-8 is involved in binding and in synergism with Cyt1Aa since Cry4Ba SI303-304AA double mutant showed decreased binding and synergism with Cyt1Aa. These data suggest that similarly to the synergism between Cry11Aa and Cyt1Aa toxins, the Cyt1Aa also functions as a receptor for Cry4Ba explaining the mechanism of synergism between these two Bti toxins.  相似文献   

3.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

4.
在蚊幼虫生活水域里的离中不粘柄菌(Asticcacaulis excentricus,Ae)中已成功表达苏云金芽孢杆菌以色列亚种(Bacillus thuringiensis subsp.israelensis,Bti)杀蚊蛋白基因cry11Aa的基础上,将另一Bti杀蚊蛋白基因cyt1Aa转化入Ae中表达。构建并转化了分别单独含有cyt1Aa基因、及同时含有cry11Aa基因的表达质粒pSODCyt20和pSODCryCyt20,蛋白免疫杂交检测相应的Ae重组子分别表达产生了Cyt1Aa和Cry11Aa蛋白。为了探究Ae(pSODCryCyt20)重组子不能表达cyt1Aa的原因,提取了重组子总RNA、并与同是革兰氏染色阴性的大肠杆菌的总RNA比较,结果显示两者RNA系统显著不同,推测Ae中多个外源基因的表达,可能要求每个基因必需一个启动子。  相似文献   

5.
Bacillus thuringiensis ssp. israelensis (Bti) has been used worldwide for the control of dipteran insect pests. This bacterium produces several Cry and Cyt toxins that individually show activity against mosquitoes but together show synergistic effect. Previous work demonstrated that Cyt1Aa synergizes the toxic activity of Cry11Aa by functioning as a membrane-bound receptor. In the case of Cry toxins active against lepidopteran insects, receptor interaction triggers the formation of a pre-pore oligomer that is responsible for pore formation and toxicity. In this work we report that binding of Cry11Aa to Cyt1Aa facilitates the formation of a Cry11Aa pre-pore oligomeric structure that is capable of forming pores in membrane vesicles. Cry11Aa and Cyt1A point mutants affected in binding and in synergism had a correlative effect on the formation of Cry11Aa pre-pore oligomer and on pore-formation activity of Cry11Aa. These data further support that Cyt1Aa interacts with Cry11Aa and demonstrate the molecular mechanism by which Cyt1Aa synergizes or suppresses resistance to Cry11Aa, by providing a binding site for Cry11Aa that will result in an efficient formation of Cry11Aa pre-pore that inserts into membranes and forms ionic pores.  相似文献   

6.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

7.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC(50)] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC(50) = 7.9 ng/ml) or B. sphaericus 2362 (LC(50) = 12.6 ng/ml).  相似文献   

8.
利用穿梭载体pBU4,将苏云金杆菌以色列亚种(Bti)的cry4Aa、cry4Ba和cry11Aa基因分别转入Bti无晶体突变株4Q7中,获得了转化菌株Bt-B601、Bt-B611和Bt-B640。SDS-PAGE结果显示:cry4Aa、cry4Ba和cry11Aa蛋白均分别获得了表达。透射电镜下观察,转化菌 有产生球形或菱形伴胞晶体。转化菌株对敏感和抗性致倦库蚊及白纹伊蚊幼虫的生物测定结果显示:cry4Aa、cry4Ba和cry11Aa蛋白对库蚊和伊蚊的毒力较低,二元毒素抗性库蚊幼虫对Bti杀蚊毒素蛋白无明显的交叉抗性。  相似文献   

9.
本研究测定了分别表达苏云金芽孢杆菌Cry4Aa、Cry4Ba、Cry11Aa、Cyt1Aa和球形芽孢杆菌二元毒素Bin的转化菌株Bt B60 1、Bt B611、Bt B640、Bt U 30和Bt CW 3全发酵培养物两两或两两以上不同组合对抗性库蚊的毒力 ,分析了杀蚊毒素间的协同作用。结果表明 ,Bin和Cry4Aa、Bin和Cry 4Ba间有明显的协同作用 ,此外 ,Cry4Aa和Cry4Ba、Cry4Aa和Cry11Aa、Cyt1Aa和Cry4Aa之间也有明显的协同作用  相似文献   

10.
Bioassays of insecticidal proteins from Bacillus thuringiensis subsp. israelensis with larvae of the malaria vector mosquito Anophelesalbimanus showed that the cytolytic protein Cyt1Aa was not toxic alone, but it increased the toxicity of the crystalline proteins Cry4Ba and Cry11Aa. Synergism also occurred between Cry4Ba and Cry11Aa toxins. Whereas many previous analyses of synergism have been based on a series of toxin concentrations leading to comparisons between expected and observed values for the concentration killing 50% of insects tested (LC50), we describe and apply a method here that enables testing for synergism based on single concentrations of toxins.  相似文献   

11.
Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.  相似文献   

12.
Three members of the δ-endotoxin group of toxins expressed by Bacillus thuringiensis subsp. israelensis, Cyt2Ba, Cry4Aa and Cry11A, were individually expressed in recombinant acrystalliferous B. thuringiensis strains for in vitro evaluation of their toxic activities against insect and mammalian cell lines. Both Cry4Aa and Cry11A toxins, activated with either trypsin or Spodoptera frugiperda gastric juice (GJ), resulted in different cleavage patterns for the activated toxins as seen by SDS-PAGE. The GJ-processed proteins were not cytotoxic to insect cell cultures. On the other hand, the combination of the trypsin-activated Cry4Aa and Cry11A toxins yielded the highest levels of cytotoxicity to all insect cells tested. The combination of activated Cyt2Ba and Cry11A also showed higher toxic activity than that of toxins activated individually. When activated Cry4Aa, Cry11A and Cyt2Ba were used simultaneously in the same assay a decrease in toxic activity was observed in all insect cells tested. No toxic effect was observed for the trypsin-activated Cry toxins in mammalian cells, but activated Cyt2Ba was toxic to human breast cancer cells (MCF-7) when tested at 20 µg/mL.  相似文献   

13.
The bioinsecticide Bacillus thuringiensis var. israelensis (Bti) is increasingly used worldwide for mosquito control. Although no established resistance to Bti has been described in the field so far, a resistant Aedes aegypti strain (LiTOX strain) was selected in the laboratory using field‐collected leaf litter containing Bti toxins. This selected strain exhibits a moderate resistance level to Bti, but a high resistance level to individual Cry toxins. As Bti contains four different toxins, generalist resistance mechanisms affecting mosquito tolerance to different toxins were expected in the resistant strain. In the present work, we show that the resistant strain exhibits an increase of various gut proteolytic activities including trypsins, leucine‐aminopeptidases, and carboxypeptidase A activities. These elevated proteolytic activities resulted in a faster activation of Cry4Aa protoxins while Cry4Ba or Cry11Aa were not affected. These results suggest that changes in proteolytic activities may contribute to Bti resistance in mosquitoes together with other mechanisms.  相似文献   

14.
Bacillus thuringiensis ssp. israelensis (Bti) produces four Cry toxins (Cry4Aa, Cry4Ba, Cry10Aa and Cry11Aa), and two Cyt proteins (Cyt1Aa and Cyt2Ba), toxic to mosquito‐larvae of the genus Aedes, Anopheles and Culex, important human disease vectors that transmit dengue virus, malaria and filarial parasites respectively. Previous work showed that Bti is highly toxic to Anopheles albimanus, the main vector for transmission of malaria in Mexico. In this work, we analysed the toxicity of isolated Cry proteins of Bti and identified an An. albimanus midgut protein as a putative Cry4Ba and Cry11Aa receptor molecule. Biossays showed that Cry4Ba and Cry11Aa of Bti are toxic to An. albimanus larvae. Ligand blot assays indicated that a 70 kDa glycosylphosphatidylinositol‐anchored protein present in midgut brush border membrane vesicles of An. albimanus interacts with Cry4Ba and Cry11Aa toxins. This protein was identified as an α‐amylase by mass spectrometry and enzymatic activity assays. The cDNA that codes for the α‐amylase was cloned by means of 5′‐ and 3′‐RACE experiments. Recombinant α‐amylase expressed in Escherichia coli specifically binds Cry4Ba and Cry11Aa toxins.  相似文献   

15.
[目的]分析苏云金芽孢杆菌的cry2A型芽孢期启动子对晶体蛋白Cry11Aa的协调作用和分子伴侣ORF1-ORF2对Cry11Aa表达的促进功能.[方法]3个包括cry11Aa编码区的重组质粒pHcy1、pHcy2和pHcy4被构建并电激转化到苏云金芽孢杆菌晶体缺陷株4Q7中,其中pHcy1质粒携带cry11Aa基因自身启动子和分子伴侣p19基因,pHcy2携带cry2A型芽孢期启动子和分子伴侣orf1-orf2基因,pHcy4质粒在pHcy1的上游插入了cry2A型芽孢期启动子和分子伴侣orf1-orf2基因.SDS-PAGE分析了Cry11Aa蛋白在各重组苏云金菌株中的表达情况,并通过生物测定确定了其对蚊虫的生物活性.[结果]SDS-PAGE结果表明,Cry11Aa蛋白在4Q7(pHcy1)和4QT(pHcy4)均获得了表达,在4Q7(pHcy2)中未检测到Cry11Aa蛋白,推测晶体蛋白Cry11A不能利用cry2A型启动子进行表达调控;Cry11Aa蛋白在等体积4Q7(pHcy4)培养液中的表达量是4Q7(pHcy1)菌株的1.25倍,暗示着分子伴侣ORF1-ORF2在某种程度上能提高Cry11Aa的蛋白表达量.4Q7(pHcy1)和4Q7(pHcy4)形成的Cry11Aa蛋白晶体的形状和大小相似,两者对致倦库蚊的生物活性没有明显差异,LC50s分别为59.33 ng/mL和66.21 ng/mL,.[结论]推测晶体蛋白Cry11A能否成功表达与其使用启动子的类型和两者的协调配合有关.分子伴侣ORF1-ORF2虽然在某种程度上能提高Cry11Aa的蛋白表达量,但对提高Cry11Aa蛋白的杀蚊毒力没有显著性帮助.  相似文献   

16.
The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered “net like” structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity.  相似文献   

17.
Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.  相似文献   

18.
Vector control can be an effective strategy to interrupt disease transmission and biolarvicides based on the entomopathogenic bacteria Bacillus sphaericus, and Bacillus thuringiensis serovar israelensis (Bti) have been successfully used to control species of public health relevance from the genera Aedes, Culex, Anopheles and Simulium. The most important feature of these agents is their ability to produce insecticidal proteins with selective action on the larval midgut. These protoxins are produced as crystals that, once ingested by larvae, are processed into active toxins, interact with receptors in the midgut epithelium and trigger cytopathological effects leading to larval death. B. sphaericus and Bti toxins share the initial steps of the mode of action; however, they interact with different midgut molecules. B. sphaericus presents a single larvicidal factor, the binary (Bin) toxin, whose action relies on the binding to one class of midgut receptors, while Bti crystals contain four protoxins (Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa), which display interactions with multiple midgut receptors. The mode of action of B. sphaericus displays a greater potential for resistance selection, compared to Bti, and, to date, there is no record of insect resistance to the latter, contrarily to B. sphaericus. The set of mosquitocidal toxins and their interaction with midgut target sites are described in this review, as well as the implications for the potential to select resistance amongst exposed populations. These biolarvicides have specific mode of action that rely on unique interactions and make them the most selective agents to control Diptera insects actually available.  相似文献   

19.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).  相似文献   

20.
苏云金杆菌以色列亚种的p19基因、cry11Aa基因和p20基因位于同一操纵子上,据推测辅助蛋白P19可能与Cry11Aa蛋白的晶体化相关。本研究利用穿梭载体pHT3101构建了两个重组质粒pHcy1和pHcy3,两质粒均携带cry11Aa基因,但后者完全缺失了cry11Aa基因上游的p19基因。将重组质粒电激转化至苏云金杆菌无晶体突变株4Q7中进行蛋白表达,SDS-PAGE结果表明在4Q7(pHcy1)和4Q7(pHcy3)中均能检测到正常表达的Cry11Aa蛋白,但单位体积培养液的Cry11Aa蛋白在辅助蛋白P19存在时的表达量明显高于其单独表达的表达量;透射电镜观察显示两菌株中的Cry11Aa蛋白形成了大小相近、形状相似的双梯形晶体;另外,生物测定结果表明重组菌株4Q7(pHcy1)和4Q7(pHcy3)对三龄致倦库蚊的杀虫活性没有显著性差异。该现象说明辅助蛋白P19的缺失对Cry11Aa蛋白的晶体形成和杀蚊活性没有影响,但P19作为分子伴侣在一定程度上帮助提高了Cry11Aa蛋白的表达水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号