首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between forskolin and vasoactive intestinal polypeptide (VIP) in the regulation of cyclic AMP production in GH3 pituitary tumour cells was investigated. Both forskolin (10nM-10 microns) and VIP (10pM-10nM) increased the cyclic AMP content of GH3 cells. Forskolin (50-100nM) was additive with VIP in stimulating cyclic AMP accumulation when low concentrations (less than 1 nM) of the peptide were used, but exhibited a synergistic interaction with higher VIP concentrations (10-100 nM). These effects on cyclic AMP accumulation were reflected in a leftward shift in the concentration-response curve for VIP-stimulated prolactin release from GH3 cells, a process known to be regulated by intracellular cyclic AMP concentrations. The synergy observed did not appear to be related to changes in cyclic nucleotide phosphodiesterase activity, since it was even more marked in the presence of isobutylmethylxanthine, a phosphodiesterase inhibitor. Studies of the time-course of VIP-induced changes in GH3-cell cyclic AMP content revealed that, with high concentrations of VIP, production ceased within 2 min of addition. This attenuation of cyclic AMP synthesis was still observed in the presence of isobutylmethylxanthine, but was markedly inhibited by low concentrations of forskolin (50-100nM). The results suggest that VIP-induced cyclic AMP production rapidly becomes desensitized. This process, which is prevented by forskolin, may be related to changes in the ability of the guanine nucleotide regulatory protein to couple receptor occupancy to activation of adenylate cyclase.  相似文献   

2.
Plasma-membrane fractions FI and FII isolated from bovine corpus luteum by discontinuous sucrose-density-gradient centrifugation, at sucrose-density interfaces of 1.14/1.16 and 1.16/1.18 respectively, contained membrane-associated protein kinases that phosphorylated both the structural proteins of membranes as well as exogenously added protein substrates. Both fractions were characterized with respect to endogenous and exogenous protein substrate specificity, pH-dependence, effect of bivalent metal ions and sensitivity toward cyclic nucleotides. These membrane-associated kinases showed an optimum pH of 6.0 and had an absolute requirement for bivalent metal ions such as Mg2+, Mn2+, or Co2+ that cannot be replaced by Ca2+. Both the activities were stimulated two- to four-fold by cyclic AMP in vitro with an apparent Km of 83 and 50 nM for fractions FI and FII respectively. Other cyclic 3':5'-nucleotides were effective only at higher concentrations, but even the most effective, cyclic IMP, showed a stimulation nearly an order of magnitude lower than that of cyclic AMP. In contrast, stimulation by cyclic dTMP and cyclic dAMP was very weak. Cyclic AMP showed no significant effect on the apparent Km value of both enzymes for histone and MgCl2 but it somewhat decreased the Km value for ATP. Nucleoside triphosphates like GTP, CTP and UTP inhibited the transfer of [32P]Pi from [gamma-32P]ATP into mixed histone catalysed by membrane-associated kinases either in the presence or in the absence of cyclic AMP. In addition to protein kinases, these membrane fractions also possessed cyclic AMP-binding activities. The apparent association constant (Kalpha) for cyclic AMP binding was 1.0 X 10(10) and 2.6 X 10(10) M for FI and FII membrane fractions respectively.  相似文献   

3.
The large-scale extraction and partial purification of endogenous 3',5'-cyclic UMP, 3',5'-cyclic IMP and 3',5'-cyclic dTMP are described. Rat liver, kidney, heart, spleen and lung tissues were subjected to a sequential purification procedure involving freeze-clamping, perchlorate extraction, alumina and Sephadex ion-exchange chromatography and preparative electrophoresis. The samples thus obtained co-chromatographed with authentic cyclic UMP, cyclic IMP and cyclic dTMP on t.l.c. and h.p.l.c. and the u.v. spectra of the extracted samples were identical with those of the standards. Fast atom bombardment of the three cyclic nucleotide standards yielded mass spectra containing a molecular protonated ion in each case; mass-analysed ion kinetic-energy spectrometry ('m.i.k.e.s') of these ions produced a spectrum unique to the parent cyclic nucleotide. The extracted putative cyclic UMP, cyclic IMP and cyclic dTMP each produced a m.i.k.e.s. identical with that obtained with the corresponding cyclic nucleotide standard. Rat liver, heart, kidney, brain, intestine, spleen, testis and lung protein preparations were each found capable of the synthesis of cyclic UMP, cyclic IMP and cyclic dTMP from the corresponding nucleoside triphosphate, of the hydrolysis of these cyclic nucleotides and of their binding, with the exception that cyclic dTMP was not synthesized by the kidney preparation.  相似文献   

4.
5.
Conditions influencing the cyclic AMP-dependence of protein kinase (ATP-protein phosphotransferase, EC 2.7.1.37) during the phosphorylation of histone were studied. Protein kinase from mouse liver cytosol and the two isoenzymes [PK (protein kinase) I and PK II] isolated from the cytosol by DEAE-cellulose chromatography were tested. A relation between concentration of enzyme and cyclic AMP-dependence was observed for both isoenzymes. Moderate dilution of isoenzyme PK II decreased the stimulation of the enzyme by cyclic AMP. Isoenzyme PK I could be diluted 200 times more than isoenzyme PK II before the same decrease in cyclic AMP-dependence appeared. Long-term incubation with high concentrations of histone increased the activity in the absence of cyclic AMP relative to the activity in the presence of the nucleotide. This was more pronounced for isoenzyme PK II than for isoenzyme PK I. The cyclic AMP concentration needed to give half-maximal binding of the nucleotide was the same as the cyclic AMP concentration (Ka) at which the protein kinase had 50% of its maximal activity. The close correlation between binding and activation is also found in the presence of KCl, which increased the apparent activation constant (Ka) for cyclic AMP. With increasing [KCl], a progressively higher proportion of the histone phosphorylation observed in cytosol was due to cyclic AMP-independent (casein) kinases, leading to an overestimation of the degree of activation of the cyclic AMP-dependent protein kinases present. The relative contributions of cyclic AMP-dependent and -independent kinases to histone phosphorylation at different ionic strengths was determined by use of heat-stable inhibitor and phospho-cellulose chromatography.  相似文献   

6.
The activity of the putative ketogenic beta-oxoacyl-CoA thiolase from mitochondria of rat liver increases with starvation, during neonatal life, and after the injection of glucagon. These changes are associated with alteration in ketonaemia. The changes in activities of this species of thiolase are not associated with significant alterations in the apparent affinity (Km) for the ketogenic substrate, acetyl-CoA. These results support a role for thiolase in the regulation of ketogenesis.  相似文献   

7.
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into 'type I or 'type II' depending on whether they were derived from 'type I' or 'type II' protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.  相似文献   

8.
Grown in liquid culture in the presence of a variety of structurally unrelated drugs, mycelia of wild-type Neurospora assume a colonial or semicolonial growth habit similar to that of known morphological mutants. Drugs that produce these morphological changes include atropine, theophylline, histamine, and several of the quinoline-containing antimalarials. Each of these drugs decrease the endogenous adenosine 3',5'-cyclic monophosphate (cAMP) concentration of mycelia as a result of their effect on the activity of adenyl cyclase, the cAMP-dependent phosphodiesterase, or both. The evidence indicates a relationship between the degree of morphological abnormality, the degree to which intracellular cAMP is reduced, and the action of the drugs on the adenyl cyclase and phosphodiesterase.  相似文献   

9.
The known amino acid sequences at the two sites on phosphorylase kinase that are phosphorylated by cyclic AMP-dependent protein kinase were extended. The sequences of 42 amino acids around the phosphorylation site on the alpha-subunit and of 14 amino acids around the phosphorylation site on the beta-subunit were shown to be: alpha-subunit Phe-Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly-Gly-His-Ser-Leu-Gly-Ala-Asp-Leu-Met-Ser-Pro-Ser-Phe-Leu-Ser-Pro-Gly-Thr-Ser-Val-Phe(Ser,Pro,Gly)His-Thr-Ser-Lys; beta-subunit, Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-VALIle-Tyr-Glu-Pro-Leu-Lys. The sites on histone H2B which are phosphorylated by cyclic AMP-dependent protein kinase in vitro were identified as serine-36 and serine-32. The amino acid sequence in this region is: Lys-Lys-Arg-Lys-Arg-Ser32(P)-Arg-Lys-Glu-Ser36(P)-Tyr-Ser-Val-Tyr-Val- [Iwai, K., Ishikawa, K. & Hayashi, H. (1970) Nature (London) 226, 1056-1058]. Serine-36 was phosphorylated at 50% of the rate at which the beta-subunit of phosphorylase kinase was phosphorylated, and it was phosphorylated 6-7-fold more rapidly than was serine-32. The amino acid sequences when compared with those at the phosphorylation sites of other physiological substrates suggest that the presence of two adjacent basic amino acids on the N-terminal side of the susceptible serine residue may be critical for specific substrate recognition in vivo.  相似文献   

10.
Thymosin fraction 5, a bovine thymus preparation, has recently been implicated in the regulation of neuroendocrine function. The purpose of the present study was to investigate the effects of thymosin fraction 5 treatment upon the GH3 rat pituitary cell line. Thymosin fraction 5 stimulated prolactin (PRL) release from these cells in a dose and time dependent manner. These results suggest that a product of the endocrine thymus may regulate the release of PRL.  相似文献   

11.
1. The catalytic subunit of bovine liver cyclic AMP-dependent protein kinase (EC2.7.1.37) was purified essentially by the method of Reimann & Corbin [(1976) Fed. Proc. Fed. Am. Soc. Exp. Biol. 35, 1384]. 2. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, sedimentation-velocity centrifugation and sedimentation-equilibrium centrifugation showed that the catalytic subunit was monodisperse. Polyacrylamide-gel isoelectric-focusing electrophoresis revealed the presence of at least three isoenzyme forms of catalytic subunit activity with slightly different pI values (6.72, 7.04 and 7.35). 3. Physical properties of the catalytic subunit were determined by several different methods. It had mol.wt. 39000-42000, Stokes radium 2.73-3.08 nm, so20.w 3.14S, f/fo 1.19-1.23 and, assuming a prolate ellipsoid, axial ration 4-5. 4. Amino acid analysis was performed on the catalytic subunit. It had one cysteine residue/molecule which was essential for activity. Inhibition by thiol-specific reagents was partially prevented by the presence of ATP-Mg2+. 5. The circular-dichroic spectrum showed the catalytic subunit contained 29% alpha-helical form, 18% beta-form and 53% aperiodic form. Near-u.v. circular dichroism showed the presence of aromatic residues whose equivalent molar ellipticity was greatly altered by the addition of ATP-Mg2+. 6. Kinetic experiments showed that the catalytic subunit had an apparent Km for ATP of 7 muM. 5'-Adenylyl imidodiphosphate inhibitied competitively with ATP with a Ki of 60 muM. The kinetic plot for histone (Sigma, type II-A) was biphasic showing 'high'-and 'low'-Km segments. Under assay conditions the specific activity of the catalytic subunit was 3 X 10(6) units/mg of protein. Of various metal ions tested, the catalytic subunit was most active with Mg2+.7. When assayed with histone (Sigma, type II-A) as substrate, the activity of the catalytic subunit was increased by non-ionic detergents or urea. No such activation was observed with casein as substrate.  相似文献   

12.
1. The effects of prostaglandins E2 and F2alpha on prolactin synthesis were examined in a clonal strain of rat pituitary tumour cells, and compared with those of thyroliberin. 2. The prostaglandins and thyroliberin gave a dose-related and time-dependent stimulation of prolactin synthesis. The maximal effects (about twofold increases) were observed after 54h of treatment with 25nM-prostaglandin E2 and 2.5nM-prostaglandin F2alpha. A similar stimulation of prolactin synthesis was observed after 250nM-thyroliberin. The combined treatment with prostaglandins and thyroliberin did not increase prolactin synthesis over and above that obtained with each compound alone. 3. After removal of prostaglandins E2 and F2alpha there was a complete reversal of prolactin synthesis to pre-stimulation values 18h later (t1/2less than or equal to 9h). The rapid reversible effect of prostaglandins was in contrast with that of thyroliberin, where prolactin synthesis returned to control values with a t1/2 of about 42 h. 4. Prostaglandin E2 (5mum) and thyroliberin (5mum) increased cellular concentrations of cyclic AMP eight- and four-fold respectively. Maximal effects were observed after 2-5min of incubation. The increases in cyclic AMP were biphasic; normal values were obtained 60 min after the start of incubation with prostaglandin E2 or thyroliberin. 5. The dose/response curve showed that prostaglandin E2 caused maximal increase of cyclic AMP at 50nM. Concentrations of prostagland in E2 that caused half-maximal stimulation of cyclic AMP accumulation and of prolactin synthesis were 4 and 5nM respectively. 6. Combined treatment with prostaglandin E2 and thyroliberin in concentrations that separately caused maximal cyclic AMP increases did not result in a further increase in this cyclic nucleotide. 7. These results are consistent with a role of cyclic AMP in mediating the effects or prostaglandins and thyroliberin on prolactin synthesis. However, if cyclic AMP is involved as a common intracellular mediator of prolactin synthesis, it cannot alone explain all the effects of prostaglandins and thyroliberin in this cell system.  相似文献   

13.
The equilibrium binding of cyclic AMP to a 150-fold purified preparation of protein kinase, when expressed as the reciprocal of bound against the reciprocal of free cyclic AMP, gave a plot consisting of two straight lines. The values of apparent Kb given by these lines were lowered by preincubating the intact tissue with noradrenaline or incubating the enzyme preparation with Mg2+ plus ATP. This effect was reversed by incubating the preparation (which contained some phosphatase impurities) with Mg2+ alone. None of these procedures affected the maximal binding of cyclic AMP. During incubation of the enzyme with Mg2+ plus ATP, the terminal phosphoryl group was incorporated into protein, over 40% being present in the kinase itself. This phosphate was removed during incubation of the preparation with Mg2+ alone. The validity of expressing cyclic AMP binding as a double-reciprocal plot is discussed, and the experimental plots are compared with those derived theoretically. The results suggest that protein kinase in brown fat is present in two forms, one with an apparent Kb for cyclic AMP or approx. 250 nM (dephosphorylation) and one with an apparent Kb of approx. 14 nM (phosphorylated). Preincubation of the tissue with noradrenaline results in phosphorylation of the kinase and an increase from 15 to 45% in the proportion of the higher-affinity form.  相似文献   

14.
15.
Triethylammonium uridine-3',5'-cyclic phosphorothioate crystallizes in space group P2(1)2(1)2(1), a = 7.177(1), b = 13.155(6), c = 21.114(7) A, C15H26N3O7PS, MW 423.4, Z = 4, dx = 1.41g/cm3. The crystal structure was solved by direct methods on the basis of 1493 counter X-ray diffraction data (CuK alpha) and refined to R = 5.1%. The configuration of the thiophosphate group is Rp; conformational parameters are: glycosyl torsion angle anti, -151.9(5) degrees, sugar pucker C(3')-endo with P = 27.3 degrees, vmax = 45.5 degrees, six-membered cycle in chair form. The bond distances in the non-esterified P-S and P-O suggest that the negative charge is distributed between the groups. As illustrated in this and other studies, P-O has a much higher affinity for hydrogen bonds than P-S, indicated here by interactions with triethyl-ammonium N-H and O(2')-H as donors. One additional hydrogen bond N(3)-H---0(4) ties the bases which form a ribbon-like structure. 0(2) and S are not engaged in hydrogen bonds. The triethylammonium ion is two-fold disordered.  相似文献   

16.
Choriogonadotropin and lutropin have been found to activate cyclic AMP-dependent protein kinase in ovarian cells isolated by collagenase dispersion from immature rats. The stimulatory effect of gonadotropins was dependent on both hormone concentration and incubation time. Choriogonadotropin at 1 mug/ml fully stimulated the protein kinase activity within 5 min of incubation, and this effect was specific for choriogonadotropin and lutropin-like activity. In addition, protein kinase activity has been characterized with respect to salt sensitivity, cyclic AMP binding, and its responsiveness to gonadotropins and other peptide hormones. Ovarian protein kinase was susceptible to high salt concentrations. The addition of 0.3-1.0 M-NaCl in incubation medium increased the activity ratio with a concomitant decrease in cycle AMP-dependence. The salt effect on protein kinase was observed both from hormone-treated and untreated cells. The hormone-stimulated and unstimulated protein kinase activity was completely stable in the absence of NaCl. No change in the activity ratio was observed when cellular extracts were assayed for protein kinase activity either immediately or after 2 h in the absence of added salt. Gel filtration in the absence of NaCl of cellular extracts prepared from choriogonadotropin-treated and untreated cells showned only a single peak of protein kinase activity that was sensitive to exogenously added cyclic AMP. By contrast, when 0.5 M-NaCl was included in the column buffer, the chromatography of untreated extract showed two peaks of protein kinase activity. The first peak was sensitive to added cyclic AMP, whereas the second peak was insensitive to it. Under identical experimental conditions, protein kinase from gonadotropin-treated cells showed, on gel filtration, only one peak of activity that was totally insensitive to added cyclic AMP. DEAE-cellulose column chromatography of a 20000 g supernatant fraction resulted in a peak of kinase activity that eluted in approx. 0.15 M-NaCl, similar to the similar to the elution of type II protein kinases as described by Corbin et al. (1975) (J. Biol. Chem. 250, 218-225). Choriogonadotropin stimulation produced a decrease in the capacity of protein kinase to bind exogenous cyclic [3H]AMP, with a concomitant increase in the kinase activity ratio. These results are consistent with the notion that cyclic AMP, GENERATED IN SITU Under hormonal stimulation, binds tot he regulatory subunit of protein kinase with subsequent dissociation of the active catalytic subunit from the holoenzyme.  相似文献   

17.
18.
19.
By c.d. studies it is shown that liver-pyruvate-kinase-related peptide substrates of cyclic AMP-dependent protein kinase have a high tendency towards non-random structures in non-aqueous media. When phosphorylated, the conformation tendencies decrease. This structural change is explained in terms of the formation of strong intrapeptide phosphate-guanidinium salt links. It is proposed that similar events occur at the catalytic site of protein kinase and that such an interaction could facilitate the removal of the phosphorylated products.  相似文献   

20.
An antiserum against the catalytic subunit C of cyclic AMP-dependent protein kinase, isolated from bovine heart type II protein kinase, was produced in rabbits. Reaction of the catalytic subunit with antiserum and separation of the immunoglobulin G fraction by Protein A-Sepharose quantitatively removed the enzyme from solutions. Comparative immunotitration of protein kinases showed that the amount of antiserum required to eliminate 50% of the enzymic activity was identical for pure catalytic subunit, and for holoenzymes type I and type II. The reactivity of the holoenzymes with the antiserum was identical in the absence or the presence of dissociating concentrations of cyclic AMP. Most of the holoenzyme (type II) remains intact when bound to the antibodies as shown by quantification of the regulatory subunit in the supernatant of the immunoprecipitate. Titration with the antibodies also revealed the presence of a cyclic AMP-independent histone kinase in bovine heart protein kinase I preparations obtained by DEAE-cellulose chromatography. Cyclic AMP-dependent protein kinase purified from the particulate fraction of bovine heart reacted with the antiserum to the same degree as the soluble enzyme, whereas two cyclic AMP-independent kinases separated from the particle fraction neither reacted with the antiserum nor influenced the reaction of the antibodies with the cyclic AMP-dependent protein kinase. Immunotitration of the protein kinase catalytic subunit C from rat liver revealed that the antibodies had rather similar reactivities towards the rat liver and the bovine heart enzyme. This points to a relatively high degree of homology of the catalytic subunit in mammalian tissues and species. Broad applicability of the antiserum to problems related to cyclic AMP-dependent protein kinases is thus indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号