首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Anhidrotic ectodermal dysplasia in an inbred kindred was observed in three sisters and three first cousins. This was interpreted as presumptive evidence for autosomal recessive inheritance and it is suggested that in addition to its known genes, anhidrotic ectodermal dysplasia occasionally may be caused by an autosomal recessive gene.This investigation was supported by Public Health Service Research Grant No. FR 00123, from GCRC-DRFR and by a Fellowship in Pediatric Teratology of the Children's Hospital Research Foundation, Cincinnati.  相似文献   

2.
3.
4.
5.
A crucial issue in genetic counseling is the recognition of nonallelic genetic heterogeneity. Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), a genetic disorder characterized by defective development of hair, teeth, and eccrine sweat glands, is usually inherited as an X-linked recessive trait mapped to the X-linked ectodermal dysplasia locus, EDA, at Xq12-q13.1. The existence of an autosomal recessive form of the disorder had been proposed but subsequently had been challenged by the hypothesis that the phenotype of severely affected daughters born to unaffected mothers in these rare families may be due to marked skewing of X inactivation. Five families with possible autosomal recessive HED have been identified, on the basis of the presence of severely affected females and unaffected parents in single sibships and in highly consanguineous families with multiple affected family members. The disorder was excluded from the EDA locus by the lack of its cosegregation with polymorphic markers flanking the EDA locus in three of five families. No mutations of the EDA gene were detected by SSCP analysis in the two families not excluded by haplotype analysis. The appearance of affected males and females in autosomal recessive HED was clinically indistinguishable from that seen in males with X-linked HED. The findings of equally affected males and females in single sibships, as well as the presence of consanguinity, support an autosomal recessive mode of inheritance. The fact that phenotypically identical types of HED can be caused by mutations at both X-linked and autosomal loci is analogous to the situation in the mouse, where indistinguishable phenotypes are produced by mutations at both X-linked (Tabby) and autosomal loci (crinkled and downless).  相似文献   

6.
7.
In an inbred Iraqi Jewish family, we have studied three siblings with presenile cataract first noticed between the ages of 20 and 51 years and segregating in an autosomal recessive mode. Using microsatellite repeat markers in close proximity to 25 genes and loci previously associated with congenital cataracts in humans and mice, we identified five markers on chromosome 19q that cosegregated with the disease. Sequencing of LIM2, one of two candidate genes in this region, revealed a homozygous T-->G change resulting in a phenylalanine-to-valine substitution at position 105 of the protein. To our knowledge, this constitutes the first report, in humans, of cataract formation associated with a mutation in LIM2. Studies of late-onset single-gene cataracts may provide insight into the pathogenesis of the more common age-related cataracts.  相似文献   

8.
X-linked hypohidrotic ectodermal dysplasia (XHED), an inherited disease recognized in humans, mice, and cattle, is characterized by hypotrichosis, a reduced number or absence of sweat glands, and missing or malformed teeth. In a subset of affected individuals and animals, mutations in the EDA gene (formerly EDI), coding for ectodysplasin, have been found to cause this phenotype. Ectodysplasin is a homotrimeric transmembrane protein with an extracellular TNF-like domain, which has been shown to be involved in the morphogenesis of hair follicles and tooth buds during fetal development. Some human XHED patients also have concurrent immunodeficiency, due to mutations in the NF-κB essential modulator protein (IKBKG; formerly NEMO), which is also encoded on the X chromosome. In a breeding colony of dogs with XHED, immune system defects had been suspected because of frequent pulmonary infections and unexpected deaths resulting from pneumonia. To determine if defects in EDA or IKBKG cause XHED in the dogs, linkage analysis and sequencing experiments were performed. A polymorphic marker near the canine EDA gene showed significant linkage to XHED. The canine EDA gene was sequenced and a nucleotide substitution (G to A) in the splice acceptor site of intron 8 was detected in affected dogs. In the presence of the A residue, a cryptic acceptor site within exon 9 is used, leading to a frame shift and use of a premature stop codon that truncates the translation of both isoforms, EDA-A1 and EDA-A2, resulting in the absence of the TNF-like homology domain, the receptor-binding site of ectodysplasin.The sequence data described in this article have been submitted to GenBank under accession numbers AY924407–AY924414.  相似文献   

9.
Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive skeletal dysplasia accompanied by severe hearing loss. The phenotype overlaps that of the autosomal dominant disorders-Stickler and Marshall syndromes-but can be distinguished by disproportionately short limbs, severe hearing loss, and lack of ocular involvement. In one family with OSMED, a homozygous Gly-->Arg substitution has been described in COL11A2, which codes for the alpha2 chain of type XI collagen. We report seven further families with OSMED. All affected individuals had a remarkably similar phenotype: profound sensorineural hearing loss, skeletal dysplasia with limb shortening and large epiphyses, cleft palate, an extremely flat face, hypoplasia of the mandible, a short nose with anteverted nares, and a flat nasal bridge. We screened affected individuals for mutations in COL11A2 and found different mutations in each family. Individuals from four families, including three with consanguineous parents, were homozygous for mutations. Individuals from three other families, in whom parents were nonconsanguineous, were compound heterozygous. Of the 10 identified mutations, 9 are predicted to cause premature termination of translation, and 1 is predicted to cause an in-frame deletion. We conclude that the OSMED phenotype is highly homogenous and results from homozygosity or compound heterozygosity for COL11A2 mutations, most of which are predicted to cause complete absence of alpha2(XI) chains.  相似文献   

10.
Matriptase is a member of the novel family of type II transmembrane serine proteases. It was recently shown that a rare genetic disorder, autosomal recessive ichthyosis with hypotrichosis, is caused by a mutation in the coding region of matriptase. However, the biochemical and functional consequences of the G827R mutation in the catalytic domain of the enzyme have not been reported. Here we expressed the G827R-matriptase mutant in bacterial cells and found that it did not undergo autocatalytic cleavage from its zymogen to its active form as did the wild-type matriptase. Enzymatic activity measurements showed that the G827R mutant was catalytically inactive. When expressed in HEK293 cells, G827R-matriptase remained inactive but was shed as a soluble form, suggesting that another protease cleaved the full-length mature form of matriptase. Molecular modeling based on the crystal structure of matriptase showed that replacing Gly(827) by Arg blocks access to the binding/catalytic cleft of the enzyme thereby preventing autocatalysis of the zymogen form. Our study, thus, provides direct evidence that the G827R mutation in patients with autosomal recessive ichthyosis with hypotrichosis leads to the expression of an inactive protease.  相似文献   

11.
12.
Oligodontia, sparse hair and deficiency of eccrine sweat glands are the features characteristic for the phenotype of the patients with anhidrotic ectodermal dysplasia (EDA). This syndrome is caused by mutations in the EDA or DL (downless) genes, encoding members of the TNF ligand and TNF receptor families, involved in the communication between the cells during embryonic life. We investigated both the coding and noncoding regions of the EDA and the DL genes in the patients exhibiting clinical symptoms of ectodermal dysplasia. Sequence analysis of the amplified fragments of the EDA gene revealed polymorphisms in introns three, four and five. The polymorphism in intron four was found in about 60% of the patients and was no more frequent than in the normal individuals. The two other polymorphisms were rare. Polymorphisms were also observed in exons 9 and 12 of the DL gene, but they did not alter the sequence of the protein product of the gene. Our results indicate that in order to accelerate screening for the mutations of the EDA gene and reduce the costs, the amplified fragments should not contain intronic sequences. However, in the case of the DL gene, where polymorphic sites are located in exons, restriction analysis with the use of appropriate enzyme should be conducted, but usually sequencing analysis could not be avoided.  相似文献   

13.
Summary Two siblings with a short-limb dwarfing condition which we call acromesomelic dysplasia, Hunter-Thompson type are reported. Abnormalities are limited to the limbs and limb joints in this severe form of dwarfism. The middle and distal segments of the limbs are most affected. The lower limbs are more affected than the upper. We are aware of one previously published case of this entity reported by A. G. W. Hunter and M. W. Thompson in 1976. Dislocations of the elbows and ankles were present in all three patients and dislocations of the hips and knees in two. One of the siblings who did not have hip and knee dislocations clinically resembled Grebe chondrodysplasia, another severe acromesomelic dwarfing condition. However, radiological analysis suggests that while acromesomelic dysplasia, Hunter-Thompson type and Grebe chondrodysplasia are related, they are not identical. Grebe chondrodysplasia has been established as an autosomal recessive trait. It appears probable that the entity we describe has the same mode of genetic transmission.  相似文献   

14.

Background

Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease.

Methodology/Principal Findings

A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (p = 0.19) and no significant difference was observed in frequencies between the sexes (p = 0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (p = 0.045). The within family association between red/blue coat colour and deafness was strongly significant (p = 0.00036), with red coat colour segregating more frequently with deafness (COR = 0.48). The relationship between deafness and coat speckling approached significance (p = 0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 −log10 p-value = 3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.

Conclusions

Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.  相似文献   

15.
Nonsyndromic mental retardation is one of the most important unresolved problems in genetic health care. Autosomal forms are far more common than X-linked forms, but, in contrast to the latter, they are still largely unexplored. Here, we report a complex mutation in the ionotropic glutamate receptor 6 gene (GRIK2, also called “GLUR6”) that cosegregates with moderate-to-severe nonsyndromic autosomal recessive mental retardation in a large, consanguineous Iranian family. The predicted gene product lacks the first ligand-binding domain, the adjacent transmembrane domain, and the putative pore loop, suggesting a complete loss of function of the GLUK6 protein, which is supported by electrophysiological data. This finding provides the first proof that GLUK6 is indispensable for higher brain functions in humans, and future studies of this and other ionotropic kainate receptors will shed more light on the pathophysiology of mental retardation.  相似文献   

16.
Truncus arteriosus is an uncommon heart malformation; it is not reported that recurrence is high; nevertheless authors report three families with two or more cases; in the third there is a very high consanguinity (two uncle-niece marriages). The authors compare the situation with hypoplastic left heart and think that some cases of truncus arteriosus would have an autosomal recessive inheritance. That is an another argument for suggesting an echocardiographic survey of the pregnancies in these families.  相似文献   

17.
Complete achromatopsia associated with skeletal anomalies: a new autosomal recessive syndrome: Achromatopsia or rod monochromatism is the complete absence of color discrimination, with an estimated frequency of 1 in 100,000. To date the McKusick Catalogue includes more than 10 entities related to Achromatopsia. This paper describes four Mexican sibs with a stationary rod monochromatism, associated with long fingers and toes, hypothenar and thenar hypoplasia and pes planus, suggesting a new genetic entity probably inherited in an autosomal recessive mode.  相似文献   

18.
19.
20.
Tooth agenesis is the most common developmental dental anomaly. Absence of one or two permanent teeth is found in the majority of affected subjects. Very few patients suffer severe tooth agenesis. Recent studies revealed that WNT10A gene mutations caused syndromic and isolated severe tooth agenesis. In this study, to determine the contribution of WNT10A variants in different severities of tooth agenesis, we investigated the association between WNT10A variants and non-syndromic tooth agenesis in a Chinese population consisting of 505 tooth agenesis patients and 451 normal controls. Twenty-three novel non-synonymous variants were identified. WNT10A variants were detected in 15.8 % (75/474) of patients with 1–3 missing teeth and 51.6 % (16/31) of patients with 4 or more missing teeth. As compared with a frequency of 3.1 % in individuals with full dentition, variant allele frequencies were significantly elevated in both groups with tooth agenesis (p values of 1.00 × 10?6 and 3.89 × 10?23, respectively). Our findings showed that WNT10A variants were associated with non-syndromic tooth agenesis from mild to severe tooth agenesis, and the more severe tooth agenesis, the stronger association. Biallelic genotypes of WNT10A variants may have a pathogenic effect on tooth development. Presence of a single variant allele would be predisposing for causation with low penetrance. Together with WNT10A variant, there should be other genetic or environmental factors leading to biallelic variant-related variable clinical manifestations and single allele variant-related low penetrance. The frequent missing tooth positions in the WNT10A-related cases were consistent with that in the general population, suggesting WNT10A plays a critically important role in the etiology of general tooth agenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号