首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of transmembrane helices play a crucial role in the folding and oligomerisation of integral membrane proteins. In order to uncover novel sequence motifs mediating these interactions, we randomised one face of a transmembrane helix with a set of non-polar or moderately polar amino acids. Those sequences capable of self-interaction upon integration into bacterial inner membranes were selected by means of the ToxR/POSSYCCAT system. A comparison between low/medium-affinity and high-affinity sequences reveals that high-affinity sequences are strongly enriched in phenylalanine residues that are frequently observed at the − 3 position of GxxxG motifs, thus yielding FxxGxxxG motifs. Mutation of Phe or GxxxG in selected sequences significantly reduces self-interaction of the transmembrane domains without affecting their efficiency of membrane integration. Conversely, grafting FxxGxxxG onto unrelated transmembrane domains strongly enhances their interaction. Further, we find that FxxGxxxG is significantly over-represented in transmembrane domains of bitopic membrane proteins. The same motif contributes to self-interaction of the vesicular stomatitis virus G protein transmembrane domain. We conclude that Phe stabilises membrane-spanning GxxxG motifs. This is one example of how the role of certain side-chains in helix-helix interfaces is modulated by sequence context.  相似文献   

2.
Specific interactions of transmembrane helices play a pivotal role in the folding and oligomerization of integral membrane proteins. The helix-helix interfaces frequently depend on specific amino acid patterns. In this study, a heptad repeat pattern was randomized with all naturally occurring amino acids to uncover novel sequence motifs promoting transmembrane domain interactions. Self-interacting transmembrane domains were selected from the resulting combinatorial library by means of the ToxR/POSSYCCAT system. A comparison of the amino acid composition of high-and low-affinity sequences revealed that high-affinity transmembrane domains exhibit position-specific enrichment of histidine. Further, sequences containing His preferentially display Gly, Ser, and/or Thr residues at flanking positions and frequently contain a C-terminal GxxxG motif. Mutational analysis of selected sequences confirmed the importance of these residues in homotypic interaction. Probing heterotypic interaction indicated that His interacts in trans with hydroxylated residues. Reconstruction of minimal interaction motifs within the context of an oligo-Leu sequence confirmed that His is part of a hydrogen bonded cluster that is brought into register by the GxxxG motif. Notably, a similar motif contributes to self-interaction of the BNIP3 transmembrane domain.  相似文献   

3.
4.
Specific interactions between alpha-helical transmembrane segments are important for folding and/or oligomerization of membrane proteins. Previously, we have shown that most transmembrane helix-helix interfaces of a set of crystallized membrane proteins are structurally equivalent to soluble leucine zipper interaction domains. To establish a simplified model of these membrane-spanning leucine zippers, we studied the homophilic interactions of artificial transmembrane segments using different experimental approaches. Importantly, an oligoleucine, but not an oligoalanine, se- quence efficiently self-assembled in membranes as well as in detergent solution. Self-assembly was maintained when a leucine zipper type of heptad motif consisting of leucine residues was grafted onto an alanine host sequence. Analysis of point mutants or of a random sequence confirmed that the heptad motif of leucines mediates self-recognition of our artificial transmembrane segments. Further, a data base search identified degenerate versions of this leucine motif within transmembrane segments of a variety of functionally different proteins. For several of these natural transmembrane segments, self-interaction was experimentally verified. These results support various lines of previously reported evidence where these transmembrane segments were implicated in the oligomeric assembly of the corresponding proteins.  相似文献   

5.
An oligo-leucine sequence has previously been shown to function as an artificial transmembrane segment that efficiently self-assembles in membranes and in detergent solution. Here, a novel technique, asparagine-scanning mutagenesis, was applied to probe the interface of the self-assembled oligo-leucine domain. This novel approach identifies interfacial residues whose exchange to asparagine leads to enhanced self-interaction of transmembrane helices by interhelical hydrogen bond formation. As analyzed by the ToxR system in membranes, the interface formed by the oligo-leucine domain is based on a leucine-zipper-like heptad repeat pattern of amino acids. In general, the strongest impacts on self-assembly were seen with asparagines located around the center of the sequence, indicating that interaction is be more efficient here than at the termini of the transmembrane domains.  相似文献   

6.
Folding and oligomerization of integral membrane proteins frequently depend on specific interactions of transmembrane helices. Interacting amino acids of helix-helix interfaces may form complex motifs and exert different types of molecular forces. Here, a set of strongly self-interacting transmembrane domains (TMDs), as isolated from a combinatorial library, was found to contain basic and acidic residues, in combination with polar nonionizable amino acids and C-terminal GxxxG motifs. Mutational analyses of selected sequences and reconstruction of high-affinity interfaces confirmed the cooperation of these residues in homotypic interactions. Probing heterotypic interaction indicated the presence of interhelical charge-charge interactions. Furthermore, simple motifs of an ionizable residue and GxxxG are significantly overrepresented in natural TMDs, and a specific combination of these motifs exhibits high-affinity heterotypic interaction. We conclude that intramembrane charge-charge interactions depend on sequence context. Moreover, they appear important for homotypic and heterotypic interactions of numerous natural TMDs.  相似文献   

7.
Structural and functional studies recently indicated that the erythropoietin receptor exists as a preassembled homodimer whose activation by ligand binding requires self-interaction of its transmembrane segment. Here, we probed the interface formed by the transmembrane segments by asparagine-scanning mutagenesis in a natural membrane. We show that this interface is based on a leucine zipper-like heptad repeat pattern of amino acids. The strongest impact of asparagine was observed at position 241, suggesting the highest packing density around this position, which is in agreement with results obtained upon mutation to alanine. Interestingly, the same face of the transmembrane helix had previously been shown to enter a heterophilic interaction with the transmembrane segment of gp55-P, a viral membrane protein that leads to ligand-independent receptor activation in infected cells. Further, functional characterization of an erythropoietin receptor mutant with asparagine at position 241 in a hematopoietic cell line showed that this protein could still be activated by erythropoietin yet was not constitutively active. This suggests that forced self-interaction of the transmembrane segments does not suffice to induce signaling of the erythropoietin receptor.  相似文献   

8.
Neural networks were used to generalize common themes found in transmembrane-spanning protein helices. Various-sized databases were used containing nonoverlapping sequences, each 25 amino acids long. Training consisted of sorting these sequences into 1 of 2 groups: transmembrane helical peptides or nontransmembrane peptides. Learning was measured using a test set 10% the size of the training set. As training set size increased from 214 sequences to 1,751 sequences, learning increased in a nonlinear manner from 75% to a high of 98%, then declined to a low of 87%. The final training database consisted of roughly equal numbers of transmembrane (928) and nontransmembrane (1,018) sequences. All transmembrane sequences were entered into the database with respect to their lipid membrane orientation: from inside the membrane to outside. Generalized transmembrane helix and nontransmembrane peptides were constructed from the maximally weighted connecting strengths of fully trained networks. Four generalized transmembrane helices were found to contain 9 consensus residues: a K-R-F triplet was found at the inside lipid interface, 2 isoleucine and 2 other phenylalanine residues were present in the helical body, and 2 tryptophan residues were found near the outside lipid interface. As a test of the training method, bacteriorhodopsin was examined to determine the position of its 7 transmembrane helices.  相似文献   

9.
10.
Verma R  Ghosh JK 《Biochimie》2011,93(6):1001-1011
In order to examine the ability of S3 and S4 segments of a Kv channel to interact with each other, two wild type short peptides derived from the S3 and S4 segments of KvAP channel were synthesized. Additionally, to evaluate the role of positive charges and an identified heptad repeat in the S4 segment, two S4 mutants of the same size as the S4 peptide, one with substitution of two leucine residues in the heptad repeat sequence by two alanine residues and in the other two arginine residues replaced by two glutamines residues were synthesized. Our results show that only the wild type S4 peptide, but not its mutants, self-assembled and permeabilized negatively charged phospholipid vesicles. The S3 peptide showed lesser affinity toward the same kind of lipid vesicles and localized onto its surface. However, the S3 peptide interacted only with S4 wild type peptide, but not with S4 mutants, and altered its localization onto the phospholipid membrane with increased resistance against the proteolytic enzyme, proteinase-k, in the presence of the S4 peptide. The results demonstrate that the selected, synthetic S3 and S4 segments possess the required amino acid sequences to interact with each other and show that the positive charges and the identified heptad repeat in S4 contribute to its assembly and interaction with S3 segment.  相似文献   

11.
Johnson RM  Hecht K  Deber CM 《Biochemistry》2007,46(32):9208-9214
The cation-pi interaction is an electrostatic attraction between a positive charge and the conjugated pi electrons of an aromatic ring. These interactions are well documented in soluble proteins and can be both structurally and functionally important. Catalyzed by observations in our laboratory that an Ala- and Ile-rich two-helix transmembrane segment tended to form SDS-resistant dimers upon the incorporation of suitably located Trp residues, here we have constructed a library of related constructs to study systematically the impact of aromatic-aromatic and cation-pi interactions on tertiary structure formation within an Escherichia coli membrane. Using the TOXCAT oligomerization assay with the hydrophobic segment AIAIAIIAZAXAIIAIAIAI, where Z = A, W, Y, or F and X = A, H, R, or K in all possible combinations of cation and/or aromatic pairings, to assess the TM-TM dependent expression of the chloramphenicol acetyltransferase reporter gene, we find that cation-pi interactions, particularly between Lys and Trp, Tyr, or Phe, as well as weakly polar interactions between pairs of aromatic residues, significantly enhance the strength of oligomerization of these hydrophobic helices, in some instances forming oligomers four times stronger than the high-affinity glycophorin A dimer. The contribution of these forces to the tertiary structure formation in designed transmembrane segments suggests that similar forces may also be a significant factor in the folding and stability of native membrane proteins.  相似文献   

12.
Vostrikov VV  Koeppe RE 《Biochemistry》2011,50(35):7522-7535
While the interfacial partitioning of charged or aromatic anchor residues may determine the preferred orientations of transmembrane peptide helices, the dependence of helix orientation on anchor residue position is not well understood. When anchor residue locations are changed systematically, some adaptations of the peptide-lipid interactions may be required to compensate for the altered interfacial interactions. Recently, we have developed a novel transmembrane peptide, termed GW(5,19)ALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide), which proves to be a well-behaved sequence for an orderly investigation of protein-lipid interactions. Its roughly symmetric nature allows for shifting the anchoring Trp residues by one Leu-Ala pair inward (GW(7,17)ALP23) or outward (GW(3,21)ALP23), thus providing fine adjustments of the formal distance between the tryptophan residues. With no other obvious anchoring features present, we postulate that the inter-Trp distance may be crucial for aspects of the peptide-lipid interaction. Importantly, the amino acid composition is identical for each of the resulting related GWALP23 sequences, and the radial separation between the pairs of Trp residues on each side of the transmembrane α-helix remains similar. Here we address the adaptation of the aforementioned peptides to the varying Trp locations by means of solid-state (2)H nuclear magnetic resonance experiments in varying lipid bilayer membrane environments. All of the GW(x,y)ALP23 sequence isomers adopt transmembrane orientations in DOPC, DMPC, and DLPC environments, even when the Trp residues are quite closely spaced, in GW(7,17)ALP23. Furthermore, the dynamics for each peptide isomer are less extensive than for peptides possessing additional interfacial Trp residues. The helical secondary structure is maintained more strongly within the Trp-flanked core region than outside of the Trp boundaries. Deuterium-labeled tryptophan indole rings in the GW(x,y)ALP23 peptides provide additional insights into the behavior of the Trp side chains. A Trp side chain near the C-terminus adopts a different orientation and undergoes somewhat faster dynamics than a corresponding Trp side chain located an equivalent distance from the N-terminus. In contrast, as the inter-Trp distance changes, the variations among the average orientations of the Trp indole rings at either terminus are systematic yet fairly small. We conclude that subtle adjustments to the peptide tilt, and to the N- and C-terminal Trp side chain torsion angles, permit the GW(x,y)ALP23 peptides to maintain preferred transmembrane orientations while adapting to lipid bilayers with differing hydrophobic thicknesses.  相似文献   

13.
Positions and rotations of two helices in the tertiary structure of bacteriorhodopsin have been studied by neutron diffraction using reconstituted, hybrid purple membrane samples. Purple membrane was biosynthetically 2H-labeled at non-exchangeable hydrogen positions of leucine and tryptophan residues. Two chymotryptic fragments were purified, encompassing either the first two or the last five of the seven putative transmembrane segments identified in the amino acid sequence of bacteriorhodopsin. The 2H-labeled fragments, diluted to variable extents with the identical, unlabeled fragment, were mixed with their unlabeled counterpart; bacteriorhodopsin was then renatured and reconstituted. The crystalline purple membrane samples thus obtained contained hybrid bacteriorhodopsin molecules in which certain transmembrane segments had been selectively 2H-labeled to various degrees. Neutron diffraction powder patterns were recorded and analyzed both by calculating difference Fourier maps and by model building. The two analyses yielded consistent results. The first and second transmembrane segments in the sequence correspond to helices 1 and 7 of the three-dimensional structure, respectively. Rotational orientations of these two helices were identified using best fits to the observed diffraction intensities. The data also put restrictions on the position of the third transmembrane segment. These observations are discussed in the context of folding models for bacteriorhodopsin, the environment of the retinal Schiff base, and site-directed mutagenesis experiments.  相似文献   

14.
Known sequence motifs containing key glycine residues can drive the homo-oligomerization of transmembrane helices. To find other motifs, a randomized library of transmembrane interfaces was generated in which glycine was omitted. The TOXCAT system, which measures transmembrane helix association in the Escherichia coli inner membrane, was used to select high-affinity homo-oligomerizing sequences in this library. The two most frequently occurring motifs were SxxSSxxT and SxxxSSxxT. Isosteric mutations of any one of the serine and threonine residues to non-polar residues abolished oligomerization, indicating that the interaction between these positions is specific and requires an extended motif of serine and threonine hydroxyl groups. Computational modeling of these sequences produced several chemically plausible structures that contain multiple hydrogen bonds between the serine and threonine residues. While single serine or threonine side-chains do not appear to promote helix association, motifs can drive strong and specific association through a cooperative network of interhelical hydrogen bonds.  相似文献   

15.
Caputo GA  London E 《Biochemistry》2003,42(11):3265-3274
A novel fluorescence method for determining the depth of Trp residues in membrane-inserted polypeptides is introduced. Quenching of Trp by acrylamide and 10-doxylnonadecane (10-DN) was used to measure Trp depth. Transmembrane helices with Trp residues at varying positions (and thus locating at different depths in lipid bilayers) were used to calibrate the method. It was found that acrylamide quenches Trp close to the bilayer surface more strongly than it quenches deeply buried Trp, while 10-DN quenches Trp close to the center of the bilayer more strongly than Trp close to the surface. The ratio of acrylamide quenching to that of 10-DN was found to be nearly linearly dependent on the depth of Trp in a membrane. It was also found that it was possible to detect coexisting shallowly and deeply inserted populations of Trp-containing polypeptides using these quenchers. In the presence of such mixed populations, acrylamide induced large blue shifts in fluorescence emission lambda(max) whereas 10-DN induced large red shifts. In a more homogeneous population quencher-induced shifts were found to be minimal. Dual quencher analysis can be used to distinguish hydrophobic helices with a transmembrane orientation from those located close to the bilayer surface and, when applied to a number of different peptides, revealed novel aspects of hydrophobic helix behavior.  相似文献   

16.
Recent studies with model peptides and statistical analyses of the crystal structures of membrane proteins have shown that buried polar interactions contribute significantly to the stabilization of the three-dimensional structures of membrane proteins. Here, we probe how the location of these polar groups along the transmembrane helices affect their free energies of interaction. Asn residues were placed singly and in pairs at three positions within a model transmembrane helix, which had previously been shown to support the formation of trimers in micelles. The model helix was designed to form a transmembrane coiled coil, with Val side chains at the "a" positions of the heptad repeat. Variants of this peptide were prepared in which an Asn residue was introduced at one or more of the "a" positions, and their free energies of association were determined by analytical ultracentrifugation. When placed near the middle of the transmembrane helix, the formation of trimers was stabilized by at least -2.0 kcal/mol per Asn side chain. When the Asn was placed at the interface between the hydrophobic and polar regions of the peptide, the substitution was neither stabilizing nor destabilizing (0.0 +/- 0.5 kcal/mol of monomer). Finally, it has previously been shown that a Val-for-Asn mutation in a water-soluble coiled coil destabilizes the structure by approximately 1.5 kcal/mol of monomer [Acharya, A., et al. (2002) Biochemistry 41, 14122-14131]. Thus, the headgroup region of a micelle appears to have a conformational impact intermediate between that of bulk water and the apolar region of micelle. A similarly large dependence on the location of the polar residues was found in a statistical survey of helical transmembrane proteins. The tendency of different types of residues to be buried in the interiors versus being exposed to lipids was analyzed. Asn and Gln show a very strong tendency to be buried when they are located near the middle of a transmembrane helix. However, when placed near the ends of transmembrane helices, they show little preference for the surface versus the interior of the protein. These data show that Asn side chains within the apolar region of the transmembrane helix provide a significantly larger driving force for association than Asn residues near the apolar/polar interface. Thus, although polar interactions are able to strongly stabilize the folding of membrane proteins, the energetics of association depend on their location within the hydrophobic region of a transmembrane helix.  相似文献   

17.
The available evidence indicates that members of the neurotransmitter:sodium symporter family form constitutive oligomers. Their second transmembrane helix (TM2) contains a leucine heptad repeat proposed to be involved in oligomerization. In artificial transmembrane segments, interhelical interactions are stabilized by polar residues. We searched for these hydrogen bond donors in TM2 by mutating the five polar residues in TM2 of the gamma-aminobutyric acid transporter-1 (GAT1). We tested the ability of the resulting mutants to oligomerize by fluorescence microscopy, Foerster resonance energy transfer, and beta-lactamase fragment complementation. Of all generated mutants, only Y86A- (but not Y86F-), E101A-, E101Q-, and E101D-GAT1 were judged by these criteria to be deficient in oligomerization and were retained intracellularly. The observations are consistent with a model where the leucine heptad repeat in TM2 drives a homophilic association that is stabilized by Tyr(86) and Glu(101); Tyr(86) participates in hydrophobic stacking. Glu(101) is in the a-position of the leucine heptad repeat (where positions 1-7 are denoted a-g, and each leucine is in the central d-position). Thus, Glu(101) is in the position predicted for the hydrogen bond donor (i.e. sandwiched between Leu(97) and Leu(104), which are one helical turn above and below Glu(101)). These key residues, namely Tyr(86) and Glu(101), are conserved in related transporters from archaeae to humans; they are therefore likely to support oligomeric assembly in transporter orthologs and possibly other proteins with multiple transmembrane segments.  相似文献   

18.
Alpha-helical coiled-coils are widely occurring protein oligomerization motifs. Here we show that most members of the collagen superfamily contain short, repeating heptad sequences typical of coiled coils. Such sequences are found at the N-terminal ends of the C-propeptide domains in all fibrillar procollagens. When fused C-terminal to a reporter molecule containing a collagen-like sequence that does not spontaneously trimerize, the C-propeptide heptad repeats induced trimerization. C-terminal heptad repeats were also found in the oligomerization domains of the multiplexins (collagens XV and XVIII). N-terminal heptad repeats are known to drive trimerization in transmembrane collagens, whereas fibril-associated collagens with interrupted triple helices, as well as collagens VII, XIII, XXIII, and XXV, were found to contain heptad repeats between collagen domains. Finally, heptad repeats were found in the von Willebrand factor A domains known to be involved in trimerization of collagen VI, as well as in collagen VII. These observations suggest that coiled-coil oligomerization domains are widely used in the assembly of collagens and collagen-like proteins.  相似文献   

19.
Specific interactions of membrane proteins with the membrane interfacial region potentially define protein position with respect to the lipid environment. We investigated the proposed roles of tryptophan and lysine side chains as "anchoring" residues of transmembrane proteins. Model systems were employed, consisting of phosphatidylcholine lipids and hydrophobic alpha-helical peptides, flanked either by tryptophans or lysines. Peptides were incorporated in bilayers of different thickness, and effects on lipid structure were analyzed. Induction of nonbilayer phases and also increases in bilayer thickness were observed that could be explained by a tendency of Trp as well as Lys residues to maintain interactions with the interfacial region. However, effects of the two peptides were remarkably different, indicating affinities of Trp and Lys for different sites at the interface. Our data support a model in which the Trp side chain has a specific affinity for a well defined site near the lipid carbonyl region, while the lysine side chain prefers to be located closer to the aqueous phase, near the lipid phosphate group. The information obtained in this study may further our understanding of the architecture of transmembrane proteins and may prove useful for refining prediction methods for transmembrane segments.  相似文献   

20.
Song C  Hunter E 《Journal of virology》2003,77(14):7779-7785
The transmembrane protein of Mason-Pfizer monkey virus contains two heptad repeats that are predicted to form amphipathic alpha-helices that mediate the conformational change necessary for membrane fusion. To analyze the relative sensitivity of the predicted hydrophobic face of the N-terminal heptad repeat to the insertion of uncharged, polar, and charged substitutions, mutations that introduced alanine, serine, or glutamic acid into positions 436, 443, 450, and 457 of the envelope protein were examined. Novel systems using Tat protein and the GHOST cell line were developed to test and quantitate the effects of the mutations on Env-mediated fusion and infectivity of the virus. While no single amino acid change at any of the positions interfered significantly with the synthesis, processing, or transport to the plasma membrane of glycoprotein complexes, 9 of the 12 nonconservative mutations in these residues completely abolished fusion activity and virus infectivity. Mutations in the central positions (443 and 450) of the heptad repeat region were the most detrimental to Env function, and even single alanine substitutions in these positions dramatically altered the fusogenicity of the protein. These results demonstrate that this N-terminal heptad repeat plays a critical role in Env-mediated membrane fusion and highlight the key function of central hydrophobic residues in this process and the sensitivity of all positions to charge substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号