首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ruegeria sp. strain KLH11, isolated from the marine sponge Mycale laxissima, produces a complex profile of N-acylhomoserine lactone quorum-sensing (QS) molecules. The genome sequence provides insights into the genetic potential of KLH11 to maintain complex QS systems, and this is the first genome report of a cultivated symbiont from a marine sponge.  相似文献   

3.
The concept of a cost of defence is fundamental to theories for the evolution of defences against consumers. However, the evidence for a cost of plant chemical defences is mixed, and often indirect. This is particularly true for marine macroalgae (seaweeds), for which inferences of cost to date rely almost exclusively on phenotypic correlations between one class of secondary metabolites (brown algal phlorotannins) and growth (or, in one instance, fecundity). No studies of the cost of seaweed chemical defense have experimentally manipulated the presence of secondary metabolites in a controlled fashion and only one previous study has considered genetic background as a factor. Here we measured the cost of halogenated furanones to the red seaweed Delisea pulchra in three ways: a) phenotypic correlations between concentrations of furanones and fecundity in field collected thalli; b) genetic correlations between concentrations of furanones and growth for clones of thalli grown from tetraspores, and c) by comparing growth rates of thalli for which furanone production was experimentally inhibited (furanone -) vs thalli which produced furanones (furanone +). Two of our three tests-correlations between furanones and fecundity, and the growth of furanone (+) vs furanone (−) thalli-indicated a cost of furanones to D. pulchra but genetic correlations between furanones and growth did not. We suggest that these apparently conflicting results are consistent with the consequences of apical growth in this alga, and may further result from a cost of furanones only being manifested at critical developmental stages or times of tissue differentiation.  相似文献   

4.
The surfaces of marine eukaryotes provide a unique habitat for colonizing microorganisms where competition between members of these communities and chemically mediated interactions with their host are thought to influence both microbial diversity and function. For example, it is believed that marine eukaryotes may use their surface-associated bacteria to produce bioactive compounds in defence against competition and to protect the host against further colonization. With the increasing need for novel drug discovery, marine epibiotic bacteria may thus represent a largely underexplored source of new antimicrobial compounds. In the current study, 325 bacterial isolates were obtained from the surfaces of marine algae Delisea pulchra and Ulva australis . Thirty-nine showed to have antimicrobial activity and were identified via 16S rRNA gene sequencing. The majority of those isolates belonged to Alpha- and Gammaproteobacteria . Interestingly, the most commonly isolated bacterial strain, Microbulbifer sp., from the surface of D. pulchra has previously been described as an ecologically significant epibiont of different marine eukaryotes. Other antimicrobial isolates obtained in this study belonged to the phyla Actinobacteria , Firmicutes and Bacteroidetes . Phylogenetically, little overlap was observed among the bacteria obtained from surfaces of D. pulchra and U. australis . The high abundance of cultured isolates that produce antimicrobials suggest that culturing remains a powerful resource for exploring novel bioactives of bacterial origin.  相似文献   

5.
The mechanism of infection by Vibrio sp. P11 promoting the ice-ice disease in Kappaphycus alvarezii was investigated in vitro. Its intensity of infection differs from that of another ice-ice promoter (Cytophaga sp. P25) by promoting the disease much faster. However, when secondary infection by other bacteria starts, its ability to compete with these bacteria gradually diminishes, whereas, infection by P25, although not displaying such drastic effects as P11, shows consistent competitive ability against other bacteria. Time-series infection experiments with application of polyclonal antibodies to specifically detect Vibrio sp. P11 revealed that this bacterium has a high affinity for the seaweed especially when the latter is stressed. It promotes the disease after a rapid increase in cell density of up to 107 g−1 (wet wt.) in the first 24 h. This bacterial cell build-up may take only 1–2 h on stressed thalli, but takes about 24 h on non-stressed thalli. Build-up is not sustainable in non-stressed thalli as high density is usually followed by a sudden decline in cell number believed to result from an algal defence against potential pathogens. Inoculation of the bacterium on thalli incubated in continuous culture system extends the time of bacterial attachment due to laminar flow and, possibly, competition by existing bacteria on the seaweed surface and in ambient seawater medium. Motility-driven cell attachment by this bacterium is suggested as an important factor for infection. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Lee J  Roh SW  Whon TW  Shin NR  Kim YO  Bae JW 《Journal of bacteriology》2011,193(13):3401-3402
Ruegeria sp. TW15, which belongs to the family Rhodobacteraceae, was isolated from an ark clam in the South Sea of Korea. Here is presented the draft genome sequence of Ruegeria sp. TW15 (4,490,771 bp with a G+C content of 55.7%), a member of the marine Roseobacter clade, which comprises up to 20% of the bacterioplankton in the coastal and oceanic mixed layer.  相似文献   

7.
Climate change and disease: bleaching of a chemically defended seaweed   总被引:2,自引:0,他引:2  
Disease is emerging as an important impact of global climate change, due to the effects of environmental change on host organisms and their pathogens. Climate‐mediated disease can have severe consequences in natural systems, particularly when ecosystem engineers, such as habitat‐formers or top predators are affected, as any impacts can cascade throughout entire food webs. In temperate marine ecosystems, seaweeds are the dominant habitat‐formers on rocky reefs. We investigated a putative bleaching disease affecting Delisea pulchra, a chemically defended seaweed that occurs within a global warming ‘hot‐spot’ and assessed how patterns of this phenomenon were influenced by ocean temperature, solar radiation, algal chemical defences and microbial pathogens. Warmer waters were consistently and positively correlated with higher frequencies of bleaching in seaweed populations, but patterns of bleaching were not consistently influenced by light levels. Bleached thalli had low levels of antibacterial chemical defences relative to healthy conspecifics and this was observed across entire thalli of partially bleached algae. Microbial communities associated with bleached algae were distinct from those on the surfaces of healthy seaweeds. Direct testing of the importance of algal chemical defences, done here for the first time in the field, demonstrated that they protected the seaweed from bleaching. Treatment of algal thalli with antibiotics reduced the severity of bleaching in experimental algae, especially at high water temperatures. These results indicate that bleaching in D. pulchra is the result of temperature‐mediated bacterial infections and highlight the potential for warming to influence disease dynamics by stressing hosts. Understanding the complex ways in which global change may affect important organisms such as habitat‐forming seaweeds, is essential for the management and conservation of natural resources.  相似文献   

8.
许多致病菌的致病机制依赖于群体感应系统的调控,经实验证明群体感应系统突变或缺失的菌株致病能力显著下降,筛选高效的群体感应抑制剂有望成为解决细菌感染以及细菌耐药性问题的一个有效途径。从海洋软体动物体内分离海洋真菌69株,发酵液粗提物经QSIS2 (Quorum Sensing Inhibitor Selector 2) 筛选模型和紫色杆菌CV026指示菌株筛选后得到编号QY013的粗提物具有群体感应抑制活性,进一步实验表明该粗提物能够显著降低铜绿假单胞菌群体感应调控的毒力因子绿脓菌素的产量,以及紫色杆菌群体感应调控的紫色菌素的产量,且在有效浓度范围内对细菌生长不产生影响。形态学特征和18S rDNA序列分析表明菌株QY013为Penicillium属。文中筛选到一株具有细菌群体感应抑制活性的海洋来源真菌,其发酵液粗提物中的有效活性成分可用于新型抗菌药物的研究。  相似文献   

9.
It is now well established that bacteria communicate through the secretion and uptake of small diffusable molecules. These chemical cues, or signals, are often used by bacteria to coordinate phenotypic expression and this mechanism of regulation presumably provides them with a competitive advantage in their natural environment. Examples of coordinated behaviors of marine bacteria which are regulated by signals include swarming and exoprotease production, which are important for niche colonisation or nutrient acquisition (e.g. protease breakdown of substrate). While the current focus on bacterial signalling centers on N-Acylated homoserine lactones, the quorum sensing signals of gram-negative bacteria, these are not the only types of signals used by bacteria. Indeed, there appears to be many other types of signals produced by bacteria and it also appears that a bacterium may use multiple classes of signals for phenotypic regulation. Recent work in the area of marine microbial ecology has led to the observation that some marine eukaryotes secrete their own signals which compete with the bacterial signals and thus inhibit the expression of bacterial signalling phenotypes. This type of molecular mimicry has been well characterised for the interaction of marine prokaryotes with the red alga, Delisea pulchra.  相似文献   

10.
Most benthic invertebrates have complex life cycles with planktonic larvae that return to the substratum to settle and metamorphose into a benthic stage. Although naturally produced chemical cues have long been thought to be important for the settlement or metamorphosis of invertebrate larvae, few ecologically relevant chemical cues have been clearly identified. The marine echinoid Holopneustes purpurascens has a complex life cycle, with a planktonic, nonfeeding dispersive larva that metamorphoses into a benthic stage that lives in the canopy of subtidal benthic algae such as the red alga Delisea pulchra and the kelp Ecklonia radiata. Recently recruited juveniles are found primarily on D. pulchra, and we hypothesized that this was in response to a chemical cue produced by this alga. Competent larvae metamorphosed in the presence of D. pulchra, or seawater surrounding this alga, but not in response to the presence of E. radiata or its extracts. A cue for metamorphosis was isolated and characterized from D. pulchra and found to be a water-soluble complex of the sugar floridoside and isethionic acid in a 1:1 molar ratio. The floridoside-isethionic acid complex also triggered settlement in H. purpurascens; however, this response was less specific than metamorphosis and was reversible. Larvae of H. purpurascens also metamorphosed in the presence of several other species of red, but not brown or green, algae from their habitat. Floridoside is found only in red algae, suggesting that the floridoside-isethionic acid complex may be acting as a cue for metamorphosis in other red algae as well as in D. pulchra.  相似文献   

11.
Lab-scale membrane bioreactors (MBRs) were investigated at 12, 18, and 25?°C to identify the correlation between quorum sensing (QS) and biofouling at different temperatures. The lower the reactor temperature, the more severe the membrane biofouling measured in terms of the transmembrane pressure (TMP) during filtration. More extracellular polymeric substances (EPSs) that cause biofouling were produced at 18?°C than at 25?°C, particularly polysaccharides, closely associated with QS via the production of N-acyl homoserine lactone (AHL). However, at 12?°C, AHL production decreased, but the release of EPSs due to deflocculation increased the soluble EPS concentration. To confirm the temperature effect related to QS, bacteria producing AHL were isolated from MBR sludge and identified as Aeromonas sp., Leclercia sp., and Enterobacter sp. through a 16S rDNA sequencing analysis. Batch assays at 18 and 25?°C showed that there was a positive correlation between QS through AHL and biofilm formation in that temperature range.  相似文献   

12.
Air temperatures have risen over the past 50 yr along the Antarctic Peninsula, and it is unclear what impact this is having on Antarctic plants. We examined the growth response of the Antarctic vascular plants Colobanthus quitensis (Caryophyllaceae) and Deschampsia antarctica (Poaceae) to temperature and also assessed their ability for thermal acclimation, in terms of whole-canopy net photosynthesis (P(n)) and dark respiration (R(d)), by growing plants for 90 d under three contrasting temperature regimes: 7°C day/7°C night, 12°C day/7°C night, and 20°C day/7°C night (18 h/6 h). These daytime temperatures represent suboptimal (7°C), near-optimal (12°C), and supraoptimal (20°C) temperatures for P(n) based on field measurements at the collection site near Palmer Station along the west coast of the Antarctic Peninsula. Plants of both species grown at a daytime temperature of 20°C had greater RGR (relative growth rate) and produced 2.2-3.3 times as much total biomass as plants grown at daytime temperatures of 12° or 7°C. Plants grown at 20°C also produced 2.0-4.1 times as many leaves, 3.4-5.5 times as much total leaf area, and had 1.5-1.6 times the LAR (leaf area ratio; leaf area:total biomass) and 1.1-1.4 times the LMR (leaf mass ratio; leaf mass:total biomass) of plants grown at 12° or 7°C. Greater RGR and biomass production at 20°C appeared primarily due to greater biomass allocation to leaf production in these plants. Rates of P(n) (leaf-area basis), when measured at their respective daytime growth temperatures, were highest in plants grown at 12°C, and rates of plants grown at 20°C were only 58 (C. quitensis) or 64% (D. antarctica) of the rates in plants grown at 12°C. Thus, lower P(n) per leaf area in plants grown at 20°C was more than offset by much greater leaf-area production. Rates of whole-canopy P(n) (per plant), when measured at their respective daytime growth temperatures, were highest in plants grown at 20°C, and appeared well correlated with differences in RGR and total biomass among treatments. Colobanthus quitensis exhibited only a slight ability for relative acclimation of P(n) (leaf-area basis) as the optimal temperature for P(n) increased from 8.4° to 10.3° to 11.5°C as daytime growth temperatures increased from 7° to 12° to 20°C. There was no evidence for relative acclimation of P(n) in D. antarctica, as plants grown at all three temperature regimes had a similar optimal temperature (10°C) for P(n). There was no evidence for absolute acclimation of P(n) in either species, as rates of P(n) in plants grown at a daytime temperature of 12°C were higher than those of plants grown at daytime temperatures of 7° or 20°C, when measured at their respective growth temperatures. The poor ability for photosynthetic acclimation in these species may be associated with the relatively stable maritime temperature regime during the growing season along the Peninsula. In contrast to P(n), both species exhibited full acclimation of R(d), and rates of R(d) on a leaf-area basis were similar among treatments when measured at their respective daytime growth temperature. Our results suggest that in the absence of interspecific competition, continued warming along the Peninsula will lead to improved vegetative growth of these species due to (1) greater biomass allocation to leaf-area production (as opposed to improved rates of P(n) per leaf area) and (2) their ability to acclimate R(d), such that respiratory losses per leaf area do not increase under higher temperature regimes.  相似文献   

13.
目的:从海洋真菌中筛选得到新型群体感应抑制剂,并对其进行活性评价。方法:首先利用紫色杆菌CV026指示菌株对真菌发酵粗提物进行活性筛选。其次通过18S r DNA序列比对进行菌种鉴定,同时采用硅胶柱色谱、凝胶柱色谱和高效液相色谱等技术并结合活性追踪检测分离纯化的活性化合物,再通过核磁质谱分析确定其结构。最后利用定量测定方法检测其在亚抑菌浓度下对紫色杆菌紫色菌素产量影响以及RT-PCR检测与QS调控相关基因的m RNA表达的影响。结果:从海藻共生菌中筛选到一株具有紫色杆菌群体感应抑制活性的海洋真菌Penicillium sp.QF046,其次级代谢产物中纯化到的活性化合物根据结构鉴定为一种星形曲霉毒素(asteltoxin)。该化合物对于紫色杆菌群体感应抑制浓度低于阳性对照化合物呋喃酮C30,同时抑制了群体感应相关基因m RNA水平的表达。结论:从海洋真菌Penicillium sp.QF046代谢产物中发现了一种抑制紫色杆菌群体感应的星形曲霉毒素,为进一步通过结构改造研发新型抗菌药物提供良好的前体化合物。  相似文献   

14.
Landis SH  Kalbe M  Reusch TB  Roth O 《PloS one》2012,7(1):e30658
Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming.  相似文献   

15.
Inactivation of the DEAD box RNA helicase, crhR, has dramatic effects on the physiology and morphology of the photosynthetic cyanobacterium, Synechocystis sp. PCC 6803. These effects are observed at both normal growth temperature (30°C) and under cold stress (20°C), indicating that CrhR performs crucial function(s) at all temperatures. A major physiological effect is the rapid cessation of photosynthesis upon temperature downshift from 30 to 20°C. This defect does not originate from an inability to transport or accumulate inorganic carbon or a deficiency in photosynthetic capacity as the mutant has sufficient electron transport and enzymatic capacity to sustain photosynthesis at 30°C and inorganic carbon (Ci) accumulation at 20°C. Oxygen consumption in the presence of methyl viologen indicated that while electron transport capacity is sufficient to accumulate Ci, the mutant does not possess sufficient activity to sustain carbon fixation at maximal rates. These defects are correlated with severely impaired cell growth and decreased viability, cell size and DNA content at low temperature. The ΔcrhR mutant also progressively accumulates structural abnormalities at low temperature that cannot be attributed solely to reactive oxygen species (ROS)-induced photooxidative damage, suggesting that they are manifestations of pre-existing defects that are amplified over time. The data indicate that the observed physiological and morphological effects are intimately related to crhR mutation, implying that the lack of CrhR RNA unwinding/annealing activity results in the inability to execute one or more vital steps in photosynthesis that are required at all temperatures but are crucial at low temperature.  相似文献   

16.
Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.  相似文献   

17.
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel bioactivities. One such area of ongoing research is the discovery of compounds that interfere with the cell–cell signalling process called quorum sensing (QS). Described as the next generation of antimicrobials, these compounds can target virulence and persistence of clinically relevant pathogens, independent of any growth-limiting effects. Marine sponges are a rich source of microbial diversity, with dynamic populations in a symbiotic relationship. In this study, we have harnessed the QS inhibition (QSI) potential of marine sponge microbiota and through culture-based discovery have uncovered small molecule signal mimics that neutralize virulence phenotypes in clinical pathogens. This study describes for the first time a marine sponge Psychrobacter sp. isolate B98C22 that blocks QS signalling, while also reporting dual QS/QSI activity in the Pseudoalteromonas sp. J10 and ParacoccusJM45. Isolation of novel QSI activities has significant potential for future therapeutic development, of particular relevance in the light of the pending perfect storm of antibiotic resistance meeting antibiotic drug discovery decline.  相似文献   

18.
The sensory capacity of bacteria and macroalgae (seaweeds) is limited with respect to many modalities (visual, auditory) common in "higher" organisms such as animals. Thus, we expect that other modalities, such as chemical signaling and sensing, would play particularly important roles in their sensory ecology. Here, we discuss two examples of chemical signaling in bacteria and seaweeds: (1) the role of chemical defenses and quorum-sensing (QS) regulatory systems in bacterial colonization and infection of the red alga Delisea pulchra and their ecological consequences, and (2) the regulation of dispersal and differentiation by nitric oxide (NO) in bacterial biofilms. Consistent with the goals of neuroecology, in both cases, we investigate the links between specific signal-mediated molecular mechanisms, and ecological outcomes, for populations or assemblages of bacteria or seaweeds. We conclude by suggesting that because of the fundamental role played by chemical signaling in bacteria, bacterial systems, either by themselves or in interactions with other organisms, have much to offer for understanding general issues in neuroecology. Thus, further integration of microbiology with the biology of eukaryotes would seem warranted and is likely to prove illuminating.  相似文献   

19.
This study was undertaken to investigate the ability of a 30 times concentrated dialysate fluid to support or inhibit growth of bacteria, and to evaluate its shelf life. The solution was inoculated with the following organisms in the logarithmic-growth phase: Escherichia coli, coagulase-positive Staphylococcus aureus, enteric Streptococcus sp., Pseudomonas sp., Klebsiella-Aerobacter sp., Proteus sp., and Bacillus subtilis. Inoculated concentrate held at 37 C showed an exponential decrease in organisms for all species except B. subtilis, with no organisms recoverable at 24 hr. To determine the effects of temperature, solution inoculated with E. coli and S. aureus was kept at 4 and 20 C. Lesser rates of bacterial decline were found at the lower temperatures, with some organisms surviving for 146 hr at 4 C. For the evaluation of shelf life, 2 liters of the solution was kept at room temperature in screw-cap bottles for 8 months; no bacterial growth occurred. The self-sterilizing property of this solution is important practically, since it removes another source of contamination from patients with reduced resistance to infection due to chronic renal disease or immunosuppressive therapy for renal homotransplantation.  相似文献   

20.
Acylhomoserine lactone (AHLs)-mediated quorum-sensing (QS) processes seem to be common in the marine environment and among marine pathogenic bacteria, but no data are available on the prevalence of bacteria capable of interfering with QS in the sea, a process that has been generally termed 'quorum quenching' (QQ). One hundred and sixty-six strains isolated from different marine dense microbial communities were screened for their ability to interfere with AHL activity. Twenty-four strains (14.4%) were able to eliminate or significantly reduce N-hexanoyl-l-homoserine lactone activity as detected by the biosensor strain Chromobacterium violaceum CV026, a much higher percentage than that reported for soil isolates, which reinforces the ecological role of QS and QQ in the marine environment. Among these, 15 strains were also able to inhibit N-decanoyl-l-homoserine lactone activity and all of them were confirmed to enzymatically inactivate the AHL signals by HPLC-MS. Active isolates belonged to nine different genera of prevalently or exclusively marine origin, including members of the Alpha- and Gammaproteobacteria (8), Actinobacteria (2), Firmicutes (4) and Bacteroidetes (1). Whether the high frequency and diversity of cultivable bacteria with QQ activity found in near-shore marine isolates reflects their prevalence among pelagic marine bacterial communities deserves further investigation in order to understand the ecological importance of AHL-mediated QS and QQ processes in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号