首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
 HLA-G is a nonclassical major histocompatibility complex (MHC) class I molecule that is expressed only in the human placenta, suggesting that it plays an important role at the fetal-maternal interface. In rhesus monkeys, which have similar placentation to humans, the HLA-G orthologue is a pseudogene. However, rhesus monkeys express a novel placental MHC class I molecule, Mamu-AG, which has HLA-G-like characteristics. Phylogenetic analysis of AG alleles in two Old World primate species, the baboon and the rhesus macaque, revealed limited diversity characteristic of a nonclassical MHC class I locus. Gene trees constructed using classical and nonclassical primate MHC class I alleles demonstrated that the AG locus was most closely related to the classical A locus. Interestingly, gene tree analyses suggested that the AG alleles were most closely related to a subset of A alleles which are the products of an ancestral interlocus recombination event between the A and B loci. Calculation of the rates of synonymous and nonsynonymous substitution at the AG locus revealed that positive selection was not acting on the codons encoding the peptide binding region. In exon 4, however, the rate of nonsynonymous substitution was significantly lower than the rate of synonymous substitution, suggesting that negative selection was acting on these codons. Received: 22 April 1998 / Revised: 15 July 1998  相似文献   

2.
 Analysis of cattle major histocompatibility complex (MHC) (BoLA) class I gene expression using serological and biochemical methods has demonstrated a high level of polymorphism. However, analysis of class I cDNA sequences has failed to produce conclusive evidence concerning the number and nature of expressed genes. Such information is essential for detailed studies of cattle immune responses, and to increase our understanding of the mechanisms of MHC evolution. In this study a selective breeding programme has been used to generate a number of MHC homozygous cattle expressing common serologically defined class I specificities. Detailed analysis of five class I haplotypes was carried out, with transcribed class I genes identified and characterized by cDNA cloning, sequence analysis, and transfection/expression studies. Surface expression of the gene products (on lymphocytes) was confirmed using monoclonal antibodies of defined BoLA specificity. Phylogenetic analysis of available transcribed cattle MHC class I sequences revealed complex evolutionary relationships including possible evidence for recombination. The study of individual haplotypes suggests that certain groupings of related sequences may correlate with loci, but overall it was not possible to define the origin of individual alleles using this approach. The most striking finding of this study is that none of the cattle class I genes is consistently expressed, and that in contrast to human, haplotypes differ from one another in both the number and composition of expressed classical class I genes. Received: 15 February 1999 / Revised: 23 June 1999  相似文献   

3.
The MHC class I molecule plays an important role in immune response, pathogen recognition and response against vaccines and self- versus non-self-recognition. Studying MHC class I characteristics thus became a priority when dealing with Aotus to ensure its use as an animal model for biomedical research. Isolation, cloning and sequencing of exons 1–8 from 27 MHC class I alleles obtained from 13 individuals classified as belonging to three owl monkey species (A. nancymaae, A. nigriceps and A. vociferans) were carried out to establish similarities between Aotus MHC class I genes and those expressed by other New and Old World primates. Six Aotus MHC class I sequence groups (Ao-g1, Ao-g2, Ao-g3, Ao-g4, Ao-g5 and Ao-g6) weakly related to non-classical Catarrhini MHC were identified. An allelic lineage was also identified in one A. nancymaae and two A. vociferans monkeys, exhibiting a high degree of conservation, negative selection along the molecule and premature termination of the open reading frame at exon 5 (Ao-g5). These sequences high conservation suggests that they more likely correspond to a soluble form of Aotus MHC class I molecules than to a new group of processed pseudogenes. Another group, named Ao-g6, exhibited a strong relationship with Catarrhinis classical MHC-B-C loci. Sequence evolution and variability analysis indicated that Aotus MHC class I molecules experience inter-locus gene conversion phenomena, contributing towards their high variability.  相似文献   

4.
Although major histocompatibility complex (MHC) class I molecules are, as a rule, highly polymorphic in mammalian species, those of the New World primate Saguinus oedipus (cotton-top tamarin) exhibit limited polymorphism. We have cloned and sequenced twelve MHC class I cDNAs from this species. Since cloned cotton-top tamarin cell lines express three to six MHC class I molecules, this species must have at least three functional MHC class I loci. There was, however, no evidence of locus-specific substitutions in the tamarin cDNAs. Unlike all other species studied, tamarin MHC class I cDNAs displayed limited nucleotide sequence variation. The sequence similarity between the two most divergent tamarin cDNAs was 95%. To ensure that the polymerase chain reaction (PCR) primers employed in these studies had amplified all of the tamarins' expressed MHC class I genes, we used another set of primers to amplify only exons 2 and 3 from RNA and DNA. PCR of genomic DNA resulted in the amplification of six distinct clones, of which only three were well expressed. Two of these nonexpressed genes were pseudogenes and the other was a nonclassical gene. Southern blot analysis demonstrated that the tamarin has 8–11 MHC class I genes, suggesting we had indeed cloned the majority of these genes. Cotton-top tamarins are, therefore, unique among mammalian species studied to date in that they express MHC class I molecules with limited nucleotide sequence variation.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M38403-15.  相似文献   

5.
6.
 The phylogenetic position of Parasitaxus (Podocarpaceae) has been inferred from a cladistic analysis of molecular characters from chloroplast and nuclear genomes including all genera of Podocarpaceae. In all 24 most parsimonious trees, based on combined datasets, Phyllocladus resided outside Podocarpaceae s. str. while Lepidothamnus was basal to the latter. Most other genera were arranged in two major clades. The evidence confirms previous studies, which have suggested a relationship between Lagarostrobos, Manoao and Parasitaxus. Parasitaxus is not directly related to its host Falcatifolium taxoides. Instead it appears to be most closely related to Manoao and Lagarostrobos. No other members of this group now occur on New Caledonia. However, if the evolution of Parasitaxus were autochthonous, a free-living member of this group must once have occurred there. An accelerated evolutionary rate of the chloroplast sequence analysed was suggested, indicating that the plant behaves like a holoparasite. Received January 4, 2002; accepted April 3, 2002 Published online: September 13, 2002  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号