首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Δ1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Δ1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.  相似文献   

2.
The Saccharomyces cerevisiae spindle pole body (SPB) consists of numerous proteins forming the outer, inner and central plaques. The protein Cnm67 is an important component of the outer plaque. The C-terminus of this protein contains a determinant important for its SPB localization. We identified a protein encoded by YOR129c which interacts with this C-terminus in the two-hybrid system. YOR129c and CNM67 exhibit weak genetic interaction. The double deletion strain yor129cdelta cnm67delta exhibits moderately increased resistance to 0.1M LiCl and hygromycin B compared with the cnm67delta single mutant. We propose that the YOR129c protein is an accessory factor associated with the cytoplasmic face of SPB and plays a role in cation homeostasis and/or multidrug resistance.  相似文献   

3.
The 42-kD component of the S. cerevisiae spindle pole body (SPB) localizes to the electron-dense central plaque of the SPB. We have cloned the corresponding gene SPC42 (spindle pole component) and show that it is essential. Seven temperature-sensitive (ts) mutants in SPC42 were prepared by error-prone PCR. We found that a change to a proline residue in a potential coiled-coil region of Spc42p was responsible for the ts phenotype in at least three alleles, suggesting that formation of the coiled-coil is essential in normal function. The mutant cells showed a phenotype of predominantly single or bilobed SPBs often with an accumulation of unstructured electron-dense material associated with the bridge structure adjacent to the SPB. This phenotype suggests a defect in SPB duplication. This was confirmed by examining synchronized mutant cells that lose viability when SPB duplication is attempted. Spc42p is a phosphoprotein which shows some cell cycle-regulated phosphorylation. Overexpression of Spc42p causes the formation of a disc- or dome-shaped polymer composed of phosphorylated Spc42p, which is attached to the central plaque and associated with the outer nuclear membrane. Taken together, these data suggest that Spc42p forms a polymeric layer at the periphery of the SPB central plaque which has an essential function during SPB duplication and may facilitate attachment of the SPB to the nuclear membrane.  相似文献   

4.
The spindle pole body (SPB) is the microtubule organizing center of Saccharomyces cerevisiae. Its core includes the proteins Spc42, Spc110 (kendrin/pericentrin ortholog), calmodulin (Cmd1), Spc29, and Cnm67. Each was tagged with CFP and YFP and their proximity to each other was determined by fluorescence resonance energy transfer (FRET). FRET was measured by a new metric that accurately reflected the relative extent of energy transfer. The FRET values established the topology of the core proteins within the architecture of SPB. The N-termini of Spc42 and Spc29, and the C-termini of all the core proteins face the gap between the IL2 layer and the central plaque. Spc110 traverses the central plaque and Cnm67 spans the IL2 layer. Spc42 is a central component of the central plaque where its N-terminus is closely associated with the C-termini of Spc29, Cmd1, and Spc110. When the donor-acceptor pairs were ordered into five broad categories of increasing FRET, the ranking of the pairs specified a unique geometry for the positions of the core proteins, as shown by a mathematical proof. The geometry was integrated with prior cryoelectron tomography to create a model of the interwoven network of proteins within the central plaque. One prediction of the model, the dimerization of the calmodulin-binding domains of Spc110, was confirmed by in vitro analysis.  相似文献   

5.
J V Kilmartin  P Y Goh 《The EMBO journal》1996,15(17):4592-4602
Spc110p is an essential component of the budding yeast spindle pole body (SPB). It binds calmodulin and contains a long central coiled-coil rod which acts as a spacer element between the central plaque of the SPB and the ends of the nuclear or spindle microtubules. This suggests that the essential function of Spc110p is to connect the nuclear microtubules to the SPB. To confirm this, we examined the phenotype of ts alleles of SPC110, one of which contains a mutation in the calmodulin binding site and was suppressed by overexpression of calmodulin. The alleles fail to form a functional mitotic spindle because spindle microtubules are not properly connected to the SPB. We also examined the phenotype of the toxic overexpression of either the wild-type or a truncated version of Spc110p containing a deletion of most of the coiled-coil domain. Both of these proteins form large ordered spheroidal polymers in the nucleus. The polymerization of the truncated Spc110p appears to be initiated inside the SPB from the position where Spc110p is normally located, and as the polymer grows in size it severs the connection between the nuclear microtubules and the SPB. The polymers were purified and are composed of Spc110p and calmodulin. A model for the structure of the polymer is proposed.  相似文献   

6.
In budding yeast, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope via its central plaque structure. Here, we describe the identification of BBP1 in a suppressor screen with a conditional lethal allele of SPC29. Bbp1p was detected at the central plaque periphery of the SPB and bbp1-1 cells were found to be defective in SPB duplication. bbp1-1 cells extend their satellite into a duplication plaque like wild-type cells; however, this duplication plaque then fails to insert properly into the nuclear envelope and does not assemble a functional inner plaque. This function in SPB duplication is probably fulfilled by a stable complex of Bbp1p and Mps2p, a nuclear envelope protein that is also essential for duplication plaque insertion. In addition, we found that Bbp1p interacts with Spc29p and the half-bridge component Kar1p. These interactions are likely to play a role in connecting the SPB with the nuclear envelope and the central plaque with the half-bridge.  相似文献   

7.
The central coiled coil of the essential spindle pole component Spc110p spans the distance between the central and inner plaques of the Saccharomyces cerevisiae spindle pole body (SPB). The carboxy terminus of Spc110p, which binds calmodulin, resides at the central plaque, and the amino terminus resides at the inner plaque from which nuclear microtubules originate. To dissect the functions of Spc110p, we created temperature-sensitive mutations in the amino and carboxy termini. Analysis of the temperature-sensitive spc110 mutations and intragenic complementation analysis of the spc110 alleles defined three functional regions of Spc110p. Region I is located at the amino terminus. Region II is located at the carboxy-terminal end of the coiled coil, and region III is the previously defined calmodulin-binding site. Overexpression of SPC98 suppresses the temperature sensitivity conferred by mutations in region I but not the phenotypes conferred by mutations in the other two regions, suggesting that the amino terminus of Spc110p is involved in an interaction with the γ-tubulin complex composed of Spc97p, Spc98p, and Tub4p. Mutations in region II lead to loss of SPB integrity during mitosis, suggesting that this region is required for the stable attachment of Spc110p to the central plaque. Our results strongly argue that Spc110p links the γ-tubulin complex to the central plaque of the SPB.  相似文献   

8.
Saccharomyces cerevisiae cnm67Delta cells lack the spindle pole body (SPB) outer plaque, the main attachment site for astral (cytoplasmic) microtubules, leading to frequent nuclear segregation failure. We monitored dynamics of green fluorescent protein-labeled nuclei and microtubules over several cell cycles. Early nuclear migration steps such as nuclear positioning and spindle orientation were slightly affected, but late phases such as rapid oscillations and insertion of the anaphase nucleus into the bud neck were mostly absent. Analyzes of microtubule dynamics revealed normal behavior of the nuclear spindle but frequent detachment of astral microtubules after SPB separation. Concomitantly, Spc72 protein, the cytoplasmic anchor for the gamma-tubulin complex, was partially lost from the SPB region with dynamics similar to those observed for microtubules. We postulate that in cnm67Delta cells Spc72-gamma-tubulin complex-capped astral microtubules are released from the half-bridge upon SPB separation but fail to be anchored to the cytoplasmic side of the SPB because of the absence of an outer plaque. However, successful nuclear segregation in cnm67Delta cells can still be achieved by elongation forces of spindles that were correctly oriented before astral microtubule detachment by action of Kip3/Kar3 motors. Interestingly, the first nuclear segregation in newborn diploid cells never fails, even though astral microtubule detachment occurs.  相似文献   

9.
Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function.  相似文献   

10.
Lai F  Wu R  Wang J  Li C  Zou L  Lu Y  Liang C 《FEMS yeast research》2011,11(1):72-79
Far3p (factor arrest), a protein that interacts with Far7-11p, is required for the pheromone-mediated cell cycle arrest in G1 phase. We used a combination of computational and experimental strategies to identify the Far3p self-association, to map the Far3p domains that interact with Far3p itself and with other Far proteins, and to reveal the importance of the two coiled-coil motifs of Far3p in the integrity and function of the Far complex. We show that Far3p self-associates through its central region and its C-terminal coiled-coil domain, that the amino acid 61-100 region of Far3p interacts with Far7p, and that the Far3p N-terminal coiled-coil domain interacts with Far9p and Far10p. Mutation of the N-terminal coiled coil disrupts the interactions of Far3p with Far9p and Far10p, and mutation of the C-terminal domain weakens the Far3p self-interaction. Although the N- and C-terminal coiled-coil mutants reserve some of the interactions with itself and some other Far proteins, both mutants are defective in the pheromone-mediated G1 arrest, indicating that both coiled-coil motifs of Far3p are essential for the integrity and the function of the Far complex.  相似文献   

11.
The polo-box domain of the budding yeast polo kinase Cdc5p plays an essential role for targeting the catalytic activity of Cdc5p to spindle pole bodies (SPBs) and cytokinetic neck-filaments. Here, we report the isolation of Bbp1p as a polo-box interacting protein by a yeast two-hybrid screen. Bbp1p localizes to the periphery of the central plaque of the SPB and plays an important role in SPB duplication. Similarly, Cdc5p localized to the cytoplasmic periphery of the SPB. In vitro binding studies showed that Cdc5p interacted with the N-terminal domain of Bbp1p (Bbp1pDeltaC), but apparently not with Mps2p, a component shown to form a stable complex with Bbp1p. In addition, Bbp1p, but likely not Mps2p, was required for proper localization of Cdc5p to the SPB. The C-terminal coiled-coil domain of Bbp1p (Bbp1p(243-385)), which is crucial for both the homodimerization and the SPB localization, could target the localization-defective Cdc5pDeltaC to the SPB and induce the release of Cdc14p from the nucleolus. Consistent with this observation, expression of CDC5DeltaC-BBP1(243-385) under CDC5 promoter control partially complemented the cdc5Delta defect. These data suggest that Bbp1pDeltaC interacts with the polo-box domain of Cdc5p, and this interaction is critical for the subcellular localization and mitotic functions of Cdc5p.  相似文献   

12.
13.
In Drosophila melanogaster oocytes, the C(3)G protein comprises the transverse filaments (TFs) of the synaptonemal complex (SC). Like other TF proteins, such as Zip1p in yeast and SCP1 in mammals, C(3)G is composed of a central coiled-coil-rich domain flanked by N- and C-terminal globular domains. Here, we analyze in-frame deletions within the N- and C-terminal regions of C(3)G in Drosophila oocytes. As is the case for Zip1p, a C-terminal deletion of C(3)G fails to attach to the lateral elements of the SC. Instead, this C-terminal deletion protein forms a large cylindrical polycomplex structure. EM analysis of this structure reveals a polycomplex of concentric rings alternating dark and light bands. However, unlike both yeast and mammals, all three proteins deleted for N-terminal regions completely abolished both SC and polycomplex formation. Both the N- and C-terminal deletions significantly reduce or abolish meiotic recombination similarly to c(3)G null homozygotes. To explain these data, we propose that in Drosophila the N terminus, but not the C-terminal globular domain, of C(3)G is critical for the formation of antiparallel pairs of C(3)G homodimers that span the central region and thus for assembly of complete TFs, while the C terminus is required to affix these homodimers to the lateral elements.  相似文献   

14.
Asymmetric mitotic segregation of the yeast spindle pole body.   总被引:33,自引:0,他引:33  
The yeast KAR1 gene is required for spindle pole body (SPB) duplication and nuclear fusion. We determine here that KAR1-beta-galactosidase hybrid proteins localize to the outer face of the SPB. Remarkably, after SPB duplication, the hybrid protein was found associated with only one of the two SPBs, usually the one that enters the bud. Using an ndc1 mutant, which forms a defective SPB at the nonpermissive temperature, we found that the hybrid was exclusively associated with the "new" SPB. Two regions of KAR1 contribute to its localization; an internal 70 residue region was necessary and sufficient to localize hybrids to the SPB, and the hydrophobic carboxyl terminus localized proteins to the nuclear envelope. The localization domains correspond to two functional domains required for SPB duplication. We suggest that KAR1 is anchored to the nuclear envelope and interacts with at least one other SPB component during the cell cycle.  相似文献   

15.
Previously we demonstrated that calmodulin binds to the carboxy terminus of Spc110p, an essential component of the Saccharomyces cerevisiae spindle pole body (SPB), and that this interaction is required for chromosome segregation. Immunoelectron microscopy presented here shows that calmodulin and thus the carboxy terminus of Spc110p localize to the central plaque. We created temperature- sensitive SPC110 mutations by combining PCR mutagenesis with a plasmid shuffle strategy. The temperature-sensitive allele spc110-220 differs from wild type at two sites. The cysteine 911 to arginine mutation resides in the calmodulin-binding site and alone confers a temperature- sensitive phenotype. Calmodulin overproduction suppresses the temperature sensitivity of spc110-220. Furthermore, calmodulin levels at the SPB decrease in the mutant cells at the restrictive temperature. Thus, calmodulin binding to Spc110-220p is defective at the nonpermissive temperature. Synchronized mutant cells incubated at the nonpermissive temperature arrest as large budded cells with a G2 content of DNA and suffer considerable lethality. Immunofluorescent staining demonstrates failure of nuclear DNA segregation and breakage of many spindles. Electron microscopy reveals an aberrant nuclear structure, the intranuclear microtubule organizer (IMO), that differs from a SPB but serves as a center of microtubule organization. The IMO appears during nascent SPB formation and disappears after SPB separation. The IMO contains both the 90-kD and the mutant 110-kD SPB components. Our results suggest that disruption of the calmodulin Spc110p interaction leads to the aberrant assembly of SPB components into the IMO, which in turn perturbs spindle formation.  相似文献   

16.
The C-terminal domains of yeast structural maintenance of chromosomes (SMC) proteins were previously shown to bind double-stranded DNA, which generated the idea of the antiparallel SMC heterodimer, such as the SMC1/3 dimer, bridging two DNA molecules. Analysis of bovine SMC1 and SMC3 protein domains now reveals that not only the C-terminal domains, but also the coiled-coil region, binds DNA, while the N terminus is inactive. Duplex DNA and DNA molecules with secondary structures are highly preferred substrates for both the C-terminal and coiled-coil domains. Contrasting other cruciform DNA-binding proteins like HMG1, the SMC3 C-terminal and coiled-coil domains do not bend DNA, but rather prevent bending in ring closure assays. Phosphatase, exonuclease, and ligase assays showed that neither domain renders DNA ends inaccessible for other enzymes. These observations allow modifications of models for SMC-DNA interactions.  相似文献   

17.
Spindle pole bodies (SPBs), like nuclear pore complexes, are embedded in the nuclear envelope (NE) at sites of fusion of the inner and outer nuclear membranes. A network of interacting proteins is required to insert a cytoplasmic SPB precursor into the NE. A central player of this network is Nbp1 that interacts with the conserved integral membrane protein Ndc1. Here, we establish that Nbp1 is a monotopic membrane protein that is essential for SPB insertion at the inner face of the NE. In vitro and in vivo studies identified an N-terminal amphipathic α-helix of Nbp1 as a membrane-binding element, with crucial functions in SPB duplication. The karyopherin Kap123 binds to a nuclear localization sequence next to this amphipathic α-helix and prevents unspecific tethering of Nbp1 to membranes. After transport into the nucleus, Nbp1 binds to the inner nuclear membrane. These data define the targeting pathway of a SPB component and suggest that the amphipathic α-helix of Nbp1 is important for SPB insertion into the NE from within the nucleus.  相似文献   

18.
The yeast KAR1 gene is essential for mitotic growth and important for nuclear fusion. Mutations in KAR1 prevent duplication of the spindle pole body (SPB), and affect functions associated with both the nuclear and cytoplasmic microtubules. The localization of hybrid Kar1-lacZ proteins, described elsewhere (Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press), suggest that the protein is associated with the SPB. In this paper, we report a deletion analysis demonstrating that the mitotic and karyogamy functions of KAR1 are separate and independent, residing in discrete functional domains. One region, here shown to be essential for mitosis, coincided with a part of the protein that is both necessary and sufficient to target Karl-lacZ hybrid proteins to the SPB (Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press). Complementation testing demonstrated that deletions in this interval did not affect nuclear fusion. A second region, required only for karyogamy, was necessary for the localization of a Kar3-lacZ hybrid protein to the SPB. These data suggest a model for the roles of Kar1p and Kar3p, a kinesin-like protein, in nuclear fusion. Finally, a third region of KAR1 was found to be important for both mitosis and karyogamy. This domain included the hydrophobic carboxy terminus and is sufficient to target a lacZ-Kar1 hybrid protein to the nuclear envelope (Vallen E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press). Altogether, the essential mitotic regions of KAR1 comprised 20% of the coding sequence. We propose a model for Kar1p in which the protein is composed of several protein-binding domains tethered to the nuclear envelope via its hydrophobic tail.  相似文献   

19.
The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.  相似文献   

20.
Bacterial translation initiation factor IF2 is a multidomain protein that is an essential component of a system for ensuring that protein synthesis begins at the correct codon within a messenger RNA. Full-length IF2 from Escherichia coli and seven fragments of the protein were expressed, purified, and characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) methods. Interestingly, resonances of the 6 kD IF2N domain located at the extreme N terminus of IF2 can be clearly identified within the NMR spectra of the full-length 97-kD protein. (15)N NMR relaxation rate data indicate that (1) the IF2N domain is internally well ordered and tumbles in solution in a manner that is independent of the other domains of the IF2 protein, and (2) the IF2N domain is connected to the C-terminal regions of IF2 by a flexible linker. Chemical shifts of resonances within the isolated IF2N domain do not significantly differ from those of the corresponding residues within the context of the full-length 97-kD protein, indicating that IF2N is a structurally independent unit that does not strongly interact with other regions of IF2. CD and NMR data together provide evidence that Domains I-III of IF2 have unstructured and flexible regions as well as substantial helical content; CD data indicate that the helical content of these regions decreases significantly at temperatures above 35 degrees C. The features of structurally well-ordered N- and C-terminal domains connected by a flexible linker with significant helical content are reminiscent of another translation initiation factor, IF3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号