首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The components of rose essential oil are mainly monoterpene alcohols, predominantly synthesized through the methylerythritol 4-phosphate (MEP) pathway in plants. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is specified to be a first committed enzyme of the MEP pathway. In order to understand better the role of DXR in the rose essential oil biosynthesis at the molecular level, the full-length cDNA of DXR sequence (designated as RhDXR) was isolated from an oil-bearing rose hybrid Rosa cv. Zizhi and characterized, and the expression profile of it was investigated. Essential oils of rose cv. Zizhi and the other five oil-bearing roses were distilled to evaluate the relationship between the expression of DXR gene and oil yield rate. The full-length cDNA of RhDXR was 1915 bp in length, comprised an open reading frame of 1419 bp, encoding an enzyme of 472 amino acids. A comparative analysis with DXRs of selected species from bacteria to higher plants revealed three conserved domains: a conserved cleavage site for plastids, an extended Prorich region, and a highly conserved NADPH oxidase-binding motif existing in the N-terminal region, like in other higher plant species. The relative expression levels of the DXR gene were determined in various tissues: receptacle, leaf, sepal, pistil, stamen, and petal (in the order of decreasing expression level), and at different flowering stages (flower bud, flower in half bloom, and flower in full bloom). Six cultivars could be classified into two groups according to flower color, and within each group there was a positive correlation between the expression level of DXR gene and oil yield rate.  相似文献   

2.
3.
4.
Feverfew (Tanacetum parthenium) is a medicinal plant belonging to the Asteraceae family. To improve understanding terpene metabolism in feverfew, the relative gene expression of four key genes coding 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGR) and germacrene A synthase (GAS) from the mevalonic acid pathway (MVA), as well as 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) from the methyl erythritol phosphate pathway (MEP), were examined. Target organs and tissues included young leaves (not fully expanded), mature leaves (fully expanded), flowers, stems, roots, and glandular trichomes. HMGR, DXR, and HDR were isolated and sequenced for the first time in feverfew. Real-time quantitative PCR analysis revealed differential expression of these genes in feverfew tissues and developmental stages.  相似文献   

5.
Although four maturity genes, E1 to E4, in soybean have been successfully cloned, their functional mechanisms and the regulatory network of photoperiodic flowering remain to be elucidated. In this study, we investigated how the diurnal expression pattern of the E1 gene is related to photoperiodic length; and to what extent allelic variation in the B3-like domain of the E1 gene is associated with flowering time phenotype. The bimodal expression of the E1 gene peaked first at around 2 hours after dawn in long-day condition. The basal expression level of E1 was enhanced by the long light phase, and decreased by duration of dark. We identified a 5bp (3 SNP and 2-bp deletion) mutation, referred to an e1-b3a, which occurs in the middle of B3 domain of the E1 gene in the early flowering cultivar Yanhuang 3. Subcellular localization analysis showed that the putative truncated e1-b3a protein was predominately distributed in nuclei, indicating the distribution pattern of e1-b3a was similar to that of E1, but not to that of e1-as. Furthermore, genetic analysis demonstrated allelic variations at the E1 locus significantly underlay flowering time in three F2 populations. Taken together, we can conclude the legume specific E1 gene confers some special features in photoperiodic control of flowering in soybean. Further characterization of the E1 gene will extend our understanding of the soybean flowering pathway in soybean.  相似文献   

6.
7.
8.
Frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara, may cause a significant yield loss to soybean growers in regions with a warm and humid climate. Two soybean accessions, PI 594891 and PI 594774, were identified to carry a high level of resistance similar to that conditioned by the Rcs3 gene in ''Davis''. Previously, we reported that the resistance to FLS in these two plant introductions (PIs) was controlled by a novel gene (s) on chromosome 13 that is different from Rcs3. To fine-map the novel FLS resistance gene(s) in these two PIs, F2: 3 seeds from the crosses between PI 594891 and PI 594774, and the FLS susceptible genotype ''Blackhawk'' were genotyped with SNP markers that were designed based on the SoySNP50k iSelect BeadChip data to identify recombinant events and locate candidate genes. Analysis of lines possessing key recombination events helped narrow down the FLS-resistance genomic region in PI 594891 from 3.3 Mb to a 72.6 kb region with five annotated genes. The resistance gene in PI 594774 was fine-mapped into a 540 kb region that encompasses the 72.6 kb region found in PI 594891. Sequencing five candidate genes in PI 594891 identified three genes that have several mutations in the promoter, intron, 5'', and 3'' UTR regions. qPCR analysis showed a difference in expression levels of these genes in both lines compared to Blackhawk in the presence of C. sojina. Based on phenotype, genotype and haplotype analysis results, these two soybean accessions might carry different resistance alleles of the same gene or two different gene(s). The identified SNPs were used to develop Kompetitive Allele Specific PCR (KASP) assays to detect the resistance alleles on chromosome 13 from the two PIs for marker-assisted selection.  相似文献   

9.
Increasing the yield of soybean (Glycine max L. Merrill) is a main aim of soybean breeding. The 100-seed weight is a critical factor for soybean yield. To facilitate genetic analysis of quantitative traits and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population consisting of 194 chromosome segment substitution lines (CSSLs) was developed. In these lines, different chromosomal segments of the Chinese cultivar Suinong 14 were substituted into the genetic background of wild soybean (Glycine soja Sieb. & Zucc.) ZYD00006. Based on these CSSLs, a genetic map covering the full genome was generated using 121 simple sequence repeat (SSR) markers. In the quantitative trait loci (QTL) analysis, twelve main effect QTLs (qSW-B1-1/2/3, qSW-D1b-1/2, qSW-D2-1/2, qSW-G-1/2/3, qSW-M-2 and qSW-N-2) underlying 100-seed weight were identified in 2011 and 2012. The epistatic effects of pairwise interactions between markers were analyzed in 2011 and 2012. The results clearly demonstrated that these CSSLs could be used to identify QTLs, and that an epistatic analysis was able to detect several sites with important epistatic effects on 100-seed weight. Thus, we identified loci that will be valuable for improving soybean 100-seed weight. These results provide a valuable foundation for identifying the precise location of genes of interest, and for designing cloning and marker-assisted selection breeding strategies targeting the 100-seed weight of soybean.  相似文献   

10.
The alternative oxidase is encoded in a multigene family in soybean   总被引:11,自引:0,他引:11  
  相似文献   

11.
12.
13.

Key message

The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level.

Abstract

Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis over the cultivar Williams 82. The overall objective of this research was to map Als1 in the soybean genome and to determine the nucleotidic changes conferring resistance to SU. Four nucleotide sequences (GmAhas1–4) showing high homology with the Arabidopsis thaliana acetohydroxyacid synthase (AHAS, EC 4.1.3.18) gene sequence were identified by in silico analysis, PCR-amplified from the SU-resistant line BTK323STS and sequenced. Expression analysis showed that GmAhas1, located on chromosome 4 by in silico analysis, is the most expressed sequence in true leaves. F2:3 families derived from the cross between susceptible and resistant lines were evaluated for SU resistance. Mapping results indicate that the locus als1 is located on chromosome 4. Sequence comparison of GmAhas1 between BTK323STS and Williams 82 showed a single nucleotide change from cytosine to thymine at position 532. This transversion generates an amino acid change from proline to serine at position 197 (A. thaliana nomenclature) of the AHAS catalytic subunit. An allele-specific marker developed for the GmAhas1 mutant sequence cosegregated with SU resistance in the F2 population. Taking together, the mapping, expression and sequencing results indicate that the GmAhas1 sequence corresponds to the Als1 gene sequence controlling SU resistance in soybean. The molecular breeding tools described herein create the basis to speed up the identification of new mutations in soybean AHAS leading to enhanced levels of resistance to SU or to other families of AHAS inhibitor herbicides.  相似文献   

14.
Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD167) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I–IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1–3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.  相似文献   

15.
Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.  相似文献   

16.
The effects of three rhizobacterial isolates namely Pseudomonas fluorescens (M1), Pseudomonas putida (M2) and Bacillus subtilis (M3) were examined to enhance growth and chemical components such as chlorophyll and proline of three cultivars of soybean (Glycine max L.) under two levels of salinity stress (S1 = 200 mM and S2 = 400 mM of NaCl salt). Several morphological and physiological parameters were investigated. The highest mean values of final germination percent (FGP) were registered in cultivar Crawford (95%) followed by Giza111 cultivar (93%) in the presence of P. fluorescens, while, FGP of Clark was 85%. Mean germination time was decreased by the application of P. fluorescens or P. putida in both salt stressed and unstressed traits. All growth parameters were significantly decreased by salinity treatments, particularly at S2. A significant increase in stem length and shoot fresh weight was recorded in plants treated with P. fluorescens. This enhancing trend was followed by the application of P. putida then B. subtilis. Chlorophyll contents and plant soluble proteins were decreased, while proline content was increased as compared with control treatment. Results showed that the salt tolerant cultivar, Crawford, may have a better tolerance strategy against oxidative damages by increasing antioxidant enzymes activities under high salinity stress. These results suggest that salt induced oxidative stress in soybean is generally counteracted by enzymatic defense systems stimulated under harsh conditions. Our results showed that inoculation with plant growth-promoting rhizobacterial (PGPR) alleviated the harmful effects of salinity stress on soybean cultivars. The diversity in the phylogenetic relationship and in the level of genetic among cultivars was assessed by SDS-PAGE and RAPD markers. Among the polymorphism bands, only few were found to be useful as positive or negative markers associated with salt stress. The maximum number of bands (17) was recorded in Crawford, while the minimum number of bands (11) was recorded in Clark. Therefore, the ISSR can be used to identify alleles associated with the salt stress in soybean germplasm.  相似文献   

17.
18.
19.
Sudden death syndrome of soybean (Glycine max) is caused by the soilborne fungus, Fusarium solani f. sp. glycines, that infects soybean roots. Besides root necrosis, symptoms include interveinal leaf chlorosis, necrosis and premature defoliation. It is proposed that a fungal toxin is produced in soybean roots and translocated to foliage. In this study, we isolated compounds from soybean stem exudates from plants that were either inoculated or not inoculated with F. solani f. sp. glycines. A protein with an estimated molecular mass of 17 kDa and designated as FISP 17 for F. solani f. sp. glycines-induced stress protein was identified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein occurred only in F. solani f. sp. glycines-infected soybean stem exudates. The N-terminal amino acid sequence of the purified protein had 100 % identity with a starvation-associated message 22 protein, and 80 and 78 % identity with purified bean pathogenesis-related proteins, PvPR1 and PvPR2, respectively. To determine if the protein was of plant or fungal origin, a synthetic peptide was designed based on the N-terminal sequence and used to raise a polyclonal antibody from rabbit. Western blot analysis showed that the antibody only reacted with a 17-kDa protein in F. solani f. sp. glycines-infected plant exudates, but no reaction occurred with healthy plant exudates or with culture filtrates of F. solani f. sp. glycines. This is the first report of the presence of a stress-induced protein in stem exudates of soybean seedlings root-infected with F. solani f. sp. glycines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号