首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress is an essential component during embryogenesis induction in microspore culture. Cold pretreatment has been used in cereal microspore culture but very seldom attempted in Brassica microspore culture. The effect of cold pretreatment of flower buds subjected to a liquid medium on microspore embryogenesis was investigated in spring and winter Brassica napus, as well as in B. rapa and B. oleracea. Cold pretreatment significantly enhanced microspore embryogenesis (by 1–7 fold) compared to commonly used microspore culture protocol in B. napus, while it was less effective in B. rapa or even negative in B. oleracea. The appropriate duration of cold pretreatment was found to be 2–4 days, which stimulated the best microspore embryogenesis. Cold pretreatment was also able to promote embryo development including the improvement of embryo quality and acceleration of embryogenesis. When incorporating with medium refreshing, cold pretreatment could initiate the most microspore embryogenesis than any other treatment used. With further improvement cold pretreatment method may have a positive potential in Brassica breeding programmes.  相似文献   

2.
Isolated microspore culture techniques are being widely used in Brassica breeding programs to generate haploid and doubled haploid plants. A number of factors influence regeneration response in vitro including genotype. In order to assess the effect of genotype on microspore embryogenesis in B. rapa L. var. oleifera, 17 cultivars and breeding lines were evaluated. Embryos developed from all but one genotype when using NLN medium with 17% sucrose, followed by a reduction in sucrose concentration to 10%, 48 h later. The number of embryos /100 buds differed between genotypes, ranging from 0 to 70. Further studies indicated that sucrose concentration and incubation time influenced embryogenesis. Selection studies carried out with an Agriculture and Agri-Food Canada breeding line have resulted in the identification of a highly embryogenic B. rapa line. This line produced thousands of microspore-derived embryos /100 buds and will be useful in mutant selection and gene transfer as well as biochemical and developmental studies.  相似文献   

3.
Brassica nigra is generally regarded as a recalcitrant species for microspore culture among Brassica crops. Conditions for reliable induction of microspore embryogenesis of B. nigra were studied in this context. Flower bud length and microspore developmental stage were correlated with further embryogenesis. The optimal bud size range was 2.0–2.5 mm for the highest proportion of totipotent, late uninucleate microspore and the highest frequency of microspore embryogenesis. Treatment of a short heat shock by incubating the microspore culture at 32°C for 24 h was suitable for the microspore survival, sustained cell divisions, and further induced embryogenesis. Subsequently, the use of NLN medium with the addition of 13% sucrose and 0.1% activated charcoal (AC) provided the optimal conditions for the development of microspore-derived embryos (MDEs). The early cotyledonary (EC) stage embryos cultured on MS medium fortified with 4.6 μM zeatin (ZT) and 0.12 μM indole-3-acetic acid (IAA) resulted in the most efficient rates of plantlet regeneration. The ploidy levels of regenerated plants of B. nigra were determined by flow cytometry, revealing that 50.6% were diploid. The results enable the advancement of breeding programs and genetic studies in B. nigra.  相似文献   

4.
The objective of this study was to improve induction of embryogenesis in white cabbage (Brassica oleracea var. capitata) microspore cultures. The effect of NLN-13 liquid medium pH on isolated microspore embryogenesis was investigated in five white cabbage genotypes. Relatively high pH (6.2 or 6.4) was more effective on microspore embryogenesis in most of the white cabbage genotypes than the pH of 5.8, especially for inducing microspore-derived embryos in recalcitrant genotype ??Zhonggan No. 8??. Based on this, 2??(N-Morpholino) ethanesulfonic acid (MES) and the arabinogalactan-protein from gum arabic were tested on four out of five genotypes to see if they could increase embryo yield in microspore cultures. Adding MES or gum arabic alone was effective for these four genotypes, but the frequency of embryos derived from microspores was still low. However, the combination of 10?mg?l?1 gum arabic and 3?mM MES in NLN-13 at pH 6.4 significantly enhanced microspore embryogenesis efficiency (with embryo production of 4.57?C222.97 embryos per bud), especially with recalcitrant genotype ??Zhonggan No. 8?? for which it was increased by about 35-fold.  相似文献   

5.
Summary Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2–3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33–35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.  相似文献   

6.
Summary Experiments were conducted to determine the effects of brassinosteroids on microspore embryogenesis in Brassica species. Two compounds, 24-epibrassinolide (EBR) and brassinolide (BL), were evaluated. An increase in embryogenesis was observed in all Brassica napus lines evaluated, including Topas 4079 and several recalcitrant cultivars: Garrison, Westar, and Allons. Microspore embryogenesis, calculated as the number of embryos at 21 d of culture, was increased in the recalcitrant cultivars up to 12 times that of the control. An increase in microspore embryogenesis was also observed for B. juncea when EBR or BL was added to the culture medium. In constrast, no significant increases in embryogenesis was observed for several other Brassica species evaluated (i.e. B. carinata, B. nigra, and B. rapa). The addition of brassinosteroids to the induction media did not affect the subsequent conversion of the embryos to plantlets, but did appear to influence chromosome doubling.  相似文献   

7.
Microspore culture is a very important and useful tool in plant breeding for haploid production and has been developed for many years.Brassica campestris (Brassica rapa L. ssp.oleifera) is an important oilseed crop, but it is relatively recalcitrant in tissue culture including microspore culture. The microspore culture in our laboratory is based on the Canadian protocol. Thirty genotypes ofB. campestris were included in this study; twenty produced embryos. The highest yield was 5930 embryos per 100 buds from Canadian genotype Cv-2, this result was one of the best that had been reported in microspore culture inB. campestris. The buds measuring 2.0 mm to 3.9 mm in length responded best to produce embryos, the optimum timing for microspore culture was confirmed to be during the mid-late to very-late uninucleate stage. The buds could be removed from either the main raceme or lateral racemes. Activated charcoal (150 mg l-1) was added to the liquid NLN medium, it promoted embryogenesis significantly; embryo development was faster and the embryo yield was significantly higher than those cultures without activated charcoal. The donor plant condition was considered an important factor influencing embryogenesis; older donor plants (older than five weeks) and a cold treatment are recommended.  相似文献   

8.
An efficient, highly reproducible system for plant regeneration via somatic embryogenesis was developed for Cenchrus ciliaris genotypes IG-3108 and IG-74. Explants such as seeds, shoot tip segments and immature inflorescences were cultured on Murashige and Skoog (MS) medium supplemented with 2.0–5.0 mg dm?3 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg dm?3 N6-benzyladenine (BA) for induction of callus. Callus could be successfully induced from all the three explants of both the genotypes. But the high frequency of embryogenic callus could be induced only from immature inflorescence explants. Somatic embryos were formed from nodular, hard and compact embryogenic calli when 2,4-D concentration was gradually reduced and BA concentration increased. Histological studies of somatic embryos indicated the presence of shoot apical meristem with leaf primordia. Ultrastructural details of globular and scutellar somatic embryos further validated successful induction and progression of somatic embryogenesis. Shoots were differentiated upon germination of somatic embryos on MS medium containing 2,4-D (0.25 mg dm?3) and BA or kinetin (1–5 mg dm?3). Roots were induced on ½ MS medium containing charcoal (0.8 %), and the regenerated plants transferred to pots and established in the soil showed normal growth and fertility.  相似文献   

9.
Picea koraiensis, called Korean spruce, is an evergreen tree and found mostly in northeast Asia. In this study, plant regeneration via somatic embryogenesis from open-pollinated immature zygotic embryos of nine genotypes of elite trees was established. Immature zygotic embryos were cultured onto RJW medium modified from 505 medium with 21.48 μM NAA, 2.22 μM BA, and 2.32 μM KT. The average frequency for all nine genotypes was 74.2%. Embryogenic calluses of the nine genotypes of elite trees were subcultured on RJW basal medium containing 8.06 μM NAA, 1.11 μM BA, and 1.16 μM kinetin. The calluses of three lines, 3#, 9#, and 2#, were actively proliferated but others were not. Somatic embryogenesis was induced from the embryogenic callus in genotypes of 3#, 9#, and 2# on RJW medium with ABA and 60 g l−1 sucrose. Cotyledonary somatic embryos were subjected to a drying process. The drying of embryos by uncapping the culture bottle for 5 days on a clean bench resulted in a high frequency of germination of somatic embryos (87% in RJW medium). However, plantlet conversion from germinated embryos was greatly reduced and the optimal medium for plant conversion was 1/2 WPM or 1/2 BMI medium. In conclusion, we have, for the first time, established a plant regeneration system via somatic embryogenesis in the Korean spruce, which can be applied for rapid micropropagation of elite trees.  相似文献   

10.
The objective of this work was to enhance the quality and quantity of microspore-derived embryos of cruciferous species by using polyethylene glycol (PEG) to replace sucrose in the culture medium. The main advantage in using PEG is that it produces embryos that are morphologically more similar to zygotic embryos and have enhanced germination capabilities. When microspores were cultured in full strength NLN medium supplemented with 25% (w/v) PEG, the addition of 3 ml of full strength NLN with 13% (w/v) sucrose at 14 d was beneficial for embryo quality and quantity. Experiments showed that this PEG system could be used for a number of Brassica napus cultivars, as well as a number of other cruciferous species. PEG enhanced microspore embryogenesis in B. nigra, Crambe abyssinica, and Raphanus oleifera. Microspore-derived embryos were obtained from all cruciferous species evaluated (B. alboglabra, B. carinata, B. juncea, B. rapa, B. nigra, R. oleifera, Crambe abyssinica, Sinapis alba) using either sucrose or PEG as the osmoticum. Microspore embryogenesis was induced in B. napus in PEG-based cultures without a 32°C heat shock (i.e., 4, 15, 18, and 24°C). These temperature conditions were non-inductive when sucrose was used as the osmoticum. Spontaneous chromosome doubling occurred in 64–92% of the regenerated plants when PEG was used in the NLN culture medium, whereas in culture medium containing sucrose, the spontaneous doubling rate was 2–18%.  相似文献   

11.
Anther culture is one of the most widely used methods to induce gametic embryogenesis. The aim of this investigation was to induce microspore embryogenesis in almond (Prunus dulcis Mill.), through this technique. Anthers were cultured at the vacuolated developmental stage, and seven cultivars, two culture media and two temperature treatments were assessed. Although evidence of the microspore induction was observed in all the genotypes and treatments tested (symmetrical nucleus division and multinucleated structures), calli were produced merely by anthers cultured in the medium P and the regeneration of embryos was detected only in anthers of the cultivars Filippo Ceo, Lauranne and Genco, placed on medium P and subjected to the Control treatment (direct culture at 25?±?1?°C, without the hot thermal shock at 35?±?1?°C for 7 days). Characterization by SSR marker analysis of the embryo genotypes revealed that the regenerants had a single allele for each locus whereas the parent cultivar was heterozygous, indicating their development from haploid microspores. This study reports the evidence of gametic embryogenesis and, particularly, of microspore embryogenesis through in vitro anther culture, in almond, and, for the first time to our knowledge, the production of homozygous embryos.  相似文献   

12.
结球甘蓝和青花菜小孢子胚植株再生   总被引:3,自引:0,他引:3  
结球甘蓝(Brassica oleracea var. capitata)和青花菜(Brassica oleracea var. italica)小孢子胚再生植株频率低是目前影响游离小孢子培养技术有效应用的关键问题之一, 研究其小孢子胚植株再生频率的影响因素, 提高胚再生植株频率, 对促进游离小孢子培养技术在甘蓝类蔬菜育种中更好地应用具有重要意义。该文以结球甘蓝中甘11和青花菜TI-111等基因型为试材, 对影响游离小孢子胚再生成植株的固体培养基类型、琼脂浓度、胚的类型及胚在液体培养基中的滞留时间等因素进行了研究。结果表明: 游离小孢子培养25天的子叶胚在琼脂浓度为1%–1.25%的B5培养基上植株再生频率最高。进一步通过8个不同基因型对上述实验结果进行了验证, 结果显示, 游离小孢子培养25天的子叶胚在1%琼脂浓度的B5培养基上植株再生频率达77.8%–97.2%。  相似文献   

13.
The production of double haploids through androgenesis is used by breeders to produce homozygous lines in a single generation. Androgenesis can be achieved by isolated microspore culture, which, however, allows the production of embryogenesis with a very low efficiency. In order to improve the overall embryogenesis in pepper, we study the differences of microspore embryogenesis in different genotypes of pepper, and also document the effect of growth regulators in pretreatment media, and activated charcoal (AC) on embryogenesis induction. Fifty different pepper genotypes were evaluated, and the swollen rate of microspores from different genotypes varied from 3.11% to 29.56% with the mean value of 13.13%. Microspores from genotype ‘36’ had the highest swollen rate, and the lowest swollen rate of microspores was observed in genotype ‘26’. It was concluded from the statistical results of L9 (33) orthogonal test that changes in the level of BA influenced the swollen rate of microspores more significantly, and the combination of 0 mg∙l 1 6-benzyladenine (BA), 0.2 mg∙l 1 α-naphthaleneacetic acid (NAA) and 0.5 mg∙l 1 kinetinin (Kin) was best. AC at a concentration of 0.05% could act as a promoter of embryogenesis in the microspore culture of different pepper genotypes, while the more significant effect was observed with the low responsive genotypes.  相似文献   

14.

As Brassicaceae species are mostly cross-pollinated, breeding homozygous parental lines by traditional approaches is time-consuming and costly. Alternatively, microspore culture has been widely applied to produce double haploid lines in a short time. This study aimed to establish a highly efficient microspore culture protocol for purple flowering stalk. Among the five genotypes studied, the highest and lowest embryo induction rates were observed in J18 and J17 (13.5 and 7.67 embryos per bud, respectively). Microspores of genotypes J17 and J18 were successfully induced to produce embryos in NLN-13 medium, but the frequency of microspore embryogenesis was low. Three non-ionic surfactants (Pluronic F-68, Triton X-100, Tween-20) were evaluated independently for their effect on microspore embryogenesis of purple flowering stalk. Microspores of the two genotypes were cultivated in NLN-13 medium supplemented with different concentrations (0.0001%, 0.001%, 0.01%, 0.1%, 0.5%, and 1% (w/v)) of the three non-ionic surfactants to enhance microspore embryogenesis and plant regeneration. In both genotypes, supplementation with any of the three non-ionic surfactants at 0.0001% significantly increased the frequency of microspore embryogenesis; furthermore, at that concentration, Tween-20 significantly increased the number of plants regenerated from induced embryoids by 29.9% and 30% in J17 and J18, respectively. Moreover, the rate of double haploid formation among regenerated plants of the five genotypes was above 60%, which allowed the creation of 93 double haploid lines.

  相似文献   

15.

Key message

Cefotaxime (100 mg/l) mitigate occasional gram negative bacterial contamination in wheat and triticale microspore culture and most importantly it increases cell growth and green plant production.

Abstract

Isolated microspore culture is a promising option to rapidly fix the product of meiotic recombination of F1 hybrids, in the process of varietal development. Clean culture and high embryogenesis rate are essential to commercial triticale and wheat microspore cultures. So, this study investigated (1) contaminants from isolated microspores cultures, (2) two antibiotics to control bacterial growth, and (3) the contribution of antibiotics to increased microspore-derived embryo-like structures (ELS), green and albino plants. Five species of bacteria were identified in contaminated cultures (Erwinia aphidicola, Pantoea agglomerans, Pseudomonas sp., Staphylococcus epidermis and Staphylococcus warneri) using fatty acid analysis and 16S ribosomal RNA sequences analysis, and yeast. Antibacterial susceptibility test using Cefotaxime and Vancomycin resulted in strong inhibition of 24 bacterial isolates, using Cefotaxime at 100 mg/l, but not Pseudomonas sp. Other antibiotic treatments inhibited bacterial growth at least partially. Microspore induction medium supplemented with the same antibiotics treatments resulted in successful microspore embryogenesis and green plant production. Antibiotic treatments were first tested in triticale and then validated in wheat cultivars AC Carberry and AC Andrew. Induction medium supplemented with Cefotaxime at 50 and 100 mg/l substantially increased the formation of ELS and green plants in triticale and wheat, respectively. Incidentally, it also affected the occurrence of albinism in all genotypes. Our results demonstrated dual purpose of Cefotaxime for isolated microspore culture, most importantly it increases cell growth and success of microspore cultures in triticale and wheat genotypes, but would also prevent accidental loss of cultures with most common bacterial contaminants.  相似文献   

16.
Competitive allele-specific PCR (KASPar) assay is a user-friendly system that provides flexibility in the numbers of single nucleotide polymorphisms (SNPs) and genotypes. Based on Illumina-GA-IIx genomic data from 10 genotypes with a broad genetic background, 3183 SNPs were selected for KASPar assays development, and 568 were finally converted and selected for Brassica rapa germplasm characterization (17.8%) on the basis of reproducibility, missing data rate, and uniform genetic distribution. High levels of polymorphism of these markers across 231 B. rapa genotypes were verified, illustrating by high polymorphic information content (averaged 0.34), minor allele frequency (0.37), genetic diversity (0.45), and the low observed heterozygosity (0.10). Based on the SNP dataset, structure and principal coordinates analysis, and neighbor-joining phylogenetic methods were used to examine the population structure and gave highly consistent results. The 231 accessions were divided into the four primary subspecies, representing 99 accessions from B. rapa ssp. pekinensis, 85 from B. rapa ssp. chinensis, 30 from B. rapa ssp. rapifera, and 17 from B. rapa ssp. oleifera and were further subdivided into 12 lower-order clusters according to different morphotypes. The genetic variability and pairwise fixation index analysis revealed that the ssp. pekinensis accessions possess the most extensive genetic variation among the four subspecies. The KASPar system is highly useful for validating SNPs and will be valuable for genetics research and breeding applications in B. rapa.  相似文献   

17.
Summary To facilitate the development of transgenic grapevines that are resistant to grapevine fanleaf virus (GFLV), grapevine leafroll-associated closterovirus (GLRaV-3) and crown gall diseases, we developed a rapid system for regenerating root-stocks: Couderc 3309, Vitis riparia ‘Gloire de Montpellier’, Teleki 5C, Millardet et De Grasset 101-14, and 110 Richter via somatic embryogenesis. Embryo culture and grape regeneration were accomplished with four media. Embryogenic calluses from anthers were induced in the initiation medium [MS basic medium containing 20 g sucrose per L, 1.1 mg 2,4-dichlorophenoxyacetic acid (2,4-D) per L, 0.2 mg N6-benzyladenine (BA) per L, and 0.8% Noble agar). The percentage of anthers that developed into embryogenic calli ranged from 2 to 16.3% depending on the rootstock. Calluses with early globular stage embryos were cocultivated with Agrobacterium tumefaciens strain C58Z707 containing the gene constructs of interest. The genes were sense-oriented translatable and antisense coat protein genes from GFLV and GLRaV-3, a truncated HSP90-related gene of GLRaV-3 (43K), and a virE2 del B gene from A. tumefaciens strain C58. Twenty independent transformation experiments were performed on five rootstocks. After 3–4 mo. under kanamycin selection, secondary embryos were recovered on differentiation medium (1/2 MS salts with 10 g sucrose per L, 4.6 g glycerol per L, and 0.8% Noble agar). Embryos that were transformed were regenerated on a medium containing MS salts with 20 g sucrose per L, 4.6 g glycerol per L, 1 g casein hydrolysate per L, and 0.8% Noble agar. Elongated embryos were then transferred to a rooting medium supplemented with 0.1 mg BA per L, 3 g activated charcoal per L, 1.5% sucrose, and 0.65% Bacto agar. A total of 928 independent putative transgenic plants were propagated in the greenhouse. All plants were tested for neomycin phosphotransferase II expression by enzyme-linked immunosorbent assay (ELISA). The presence of transgenes was assessed by polymerase chain reaction and Southern analysis. ELISA revealed various levels of expression of GFLV coat protein in transgenic plants of Couderc 3309. The transgenic rootstocks that have been generated are being screened to determine whether transgenes have conferred resistance to the virus and crown gall diseases.  相似文献   

18.
High frequency embryogenesis in immature zygotic embryos of sunflower   总被引:2,自引:0,他引:2  
In the present investigation, nutritional requirements for induction of a high frequency of well formed somatic embryos (SEs) from zygotic embryos (ZEs) of sunflower were assessed. Variables like genotype, embryo size (0.5–10 mm), sucrose concentration (30–240 g l−1), carbohydrate source (sucrose, glucose, maltose), agar strength (0.2–1.0%), basal media (MS, Gamborg, Nitsch, White), photoperiod (light/dark) and temperature (20–36°C) were tested. All these variables except photoperiod had significant effect on the frequency of embryogenesis. Highest frequency of embryogenesis was facilitated by Gamborg basal salt media, 120–210 g l−1 sucrose, 0.8–1.0% agar, smaller sized embryos (0.5–2 mm) and incubation temperature of 28–32°C. In addition to these, growth regulator combinations (2,4-D, 2,4-D+kinetin, BA+NAA) in varying concentrations were tried. Media supplemented with 2,4-D promoted direct embryogenesis, BA+NAA facilitated formation of single/multiple shoots while there was no response on 2,4-D+kinetin supplemented media. Zygotic embryos with well differentiated embryos were transferred to growth regulator free half strength MS medium for whole plantlet development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Here, we established a protocol for induction of somatic embryogenesis and plant regeneration from immature cotyledons of open-pollinated seeds of European chestnut (Castanea sativa Mill.) cultivars ‘Osmano?lu’ and ‘Sar?a?lama’. Basal media, Murashige and Skoog medium (MS), Driver and Kuniyuki Walnut medium (DKW), and Woody Plant Medium (WPM) supplemented with l-glutamine or casein hydrolysate, with or without silver nitrate, agar or gelrite, and various plant growth regulator (PGR) combinations were tested in initial cultures for induction of somatic embryos. The effects of initial cultures on the percentage of somatic embryos and average number of embryos per cotyledon explant, subcultured monthly, were determined at the end of 4 mo. Interactions were observed among the different treatments for ‘Osmano?lu’ cultivar, with the highest rates of somatic embryogenesis (4.7–9.7%) being obtained in MS, DKW, or WPM basal media supplemented with (1) 6-benzyladenine (BA; 1 mg/L)?+?kinetin (KIN; 2 mg/L)?+?indole-3-butyric acid (IBA; 0.01 mg/L); (2) BA (1 mg/L)?+?1-phenyl-3-(1,2,3-thiadiazol-5-yl; TDZ 0.1 mg/L)?+?IBA (0.01 mg/L), and (3) KIN (2 mg/L)?+?TDZ (0.1 mg/L)?+?IBA (0.01 mg/L) PGR combinations plus l-glutamine or casein hydrolysate, with or without silver nitrate, and with either gelrite or agar. The highest percentages (12.0% and 11.2%) of somatic embryogenesis for ‘Sar?a?lama’ were obtained in DKW supplemented with PGR combinations of (1) BA (1 mg/L)?+?KIN (2 mg/L)?+?IBA (0.01 mg/L), (2) BA (1 mg/L)?+?TDZ (0.1 mg/L)?+?IBA (0.01 mg/L), respectively. The average number of somatic embryos ranged between 0 and 0.65 per explant for ‘Osmano?lu’ and between 0 and 0.49 per ‘Sar?a?lama’ explant. For germination of somatic embryos, root, shoot, and plantlet regeneration, different treatments included desiccation, cold and gibberellic acid (GA3), and BA alone or in combination with auxins (IBA or α-naphthaleneacetic acid, NAA; 0.1 mg/L). The highest rate of somatic embryos regeneration (27.5%) occurred using MS basal media with half-strength microelements containing 0.1 mg/L BA?+?0.1 mg/L NAA, after treatments of desiccation, or desiccation plus cold or GA3 (3 mg/L).  相似文献   

20.

Key message

We identified three physical positions associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. We also confirmed their genetic effects on the embryo yield.

Abstract

Isolated microspore culture is well utilized for the production of haploid or doubled-haploid plants in Brassica crops. Brassica rapa cv. ‘Ho Mei’ is one of the most excellent cultivars in embryo yield of microspore culture. To identify the loci associated with microspore embryogenesis, segregation analysis of 154 DNA markers anchored to B. rapa chromosomes (A01–A10) was performed using a population of microspore-derived embryos obtained from an F1 hybrid between ‘CR-Seiga’, a low yield cultivar in microspore-derived embryos, and ‘Ho Mei’. Three regions showing significant segregation distortion with increasing ‘Ho Mei’ alleles were detected on A05, A08 and A09, although these regions showed the expected Mendelian segregation ratio in an F2 population. The additive effect of alleles in these regions on embryo yield was confirmed in a BC3F1 population. One region on A08 containing Br071-5c had a higher effect than the other regions. Polymorphism of nucleotide sequences around the Br071-5c locus was investigated to find the gene possibly responsible for efficient embryogenesis from microspores.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号