首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine how the major elements of global change affect herbivory in agroecosystems, a multifactorial experiment was conducted where soybeans were grown at two levels of carbon dioxide and temperature, including those predicted for 2050, under otherwise normal field conditions. Japanese beetles (Popillia japonica Newman) were enclosed on foliage for 24 h, after which the beetle survivorship, total and per capita leaf consumption, and leaf protease inhibitor activity were measured. The direct effect of temperature on beetle consumption and survivorship also was measured under controlled environmental conditions. No differences in total foliage consumption were observed; however, beetles forced to feed at elevated temperature in the field demonstrated greater per capita consumption and reduced survivorship compared to beetles feeding at ambient temperature. Survivorship was also greater for beetles that consumed foliage grown under elevated CO2, but there were no interactive effects of CO2 and temperature, and no differences in leaf chemistry were resolved. Leaf consumption by beetles increased strongly with increasing temperature up to ~37° C, above which increased mortality caused a precipitous decrease in consumption. An empirical model based on the temperature dependence of leaf consumption and flight suggests that the 3.5°C increase in temperature predicted for 2050 will increase the optimal feeding window for the Japanese beetle by 290%. Elevated temperature and CO2 operating independently have the potential to greatly increase foliage damage to soybean by chewing insects, such as Popillia japonica, potentially affecting crop yields.  相似文献   

2.
Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere‐atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2‐saturated at current CO2 concentrations ([CO2]) and the primary response of maize to elevated [CO2] is decreased stomatal conductance (gs). If maize photosynthesis is not stimulated in elevated [CO2], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative to that previously reported in soybean, a C3 species. The objective of this study is to quantify the impact of elevated [CO2] on canopy energy and water fluxes of maize (Zea mays). Maize was grown under ambient and elevated [CO2] (550 μmol mol?1 during 2004 and 2006 and 585 μmol mol?1 during 2010) using Free Air Concentration Enrichment (FACE) technology at the SoyFACE facility in Urbana, Illinois. Maize ET was determined using a residual energy balance approach based on measurements of sensible (H) and soil heat fluxes, and net radiation. Relative to control, elevated [CO2] decreased maize ET (7–11%; P < 0.01) along with lesser soil moisture depletion, while H increased (25–30 W m?2; P < 0.01) along with higher canopy temperature (0.5–0.6 °C). This reduction in maize ET in elevated [CO2] is approximately half that previously reported for soybean. A partitioning analysis showed that transpiration contributed less to total ET for maize compared to soybean, indicating a smaller role of stomata in dictating the ET response to elevated [CO2]. Nonetheless, both maize and soybean had significantly decreased ET and increased H, highlighting the critical role of elevated [CO2] in altering future hydrology and climate of the region that is extensively cropped with these species.  相似文献   

3.
Elevation in atmospheric CO2 concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO2 on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO2 would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO2 decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO2 also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO2 increased plant height and aboveground biomass. Additionally, elevated CO2 increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO2 increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO2 reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus‐infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO2 makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO2 conditions.  相似文献   

4.
Abstract Plants grown under elevated carbon dioxide (CO2) experience physiological changes that influence their suitability as food for insects. To determine the effects of living on soybean (Glycine max Linnaeus) grown under elevated CO2, population growth of the soybean aphid (Aphis glycines Matsumura) was determined at the SoyFACE research site at the University of Illinois, Urbana‐Champaign, Illinois, USA, grown under elevated (550 μL/L) and ambient (370 μL/L) levels of CO2. Growth of aphid populations under elevated CO2 was significantly greater after 1 week, with populations attaining twice the size of those on plants grown under ambient levels of CO2. Soybean leaves grown under elevated levels of CO2 were previously demonstrated at SoyFACE to have increased leaf temperature caused by reduced stomatal conductance. To separate the increased leaf temperature from other effects of elevated CO2, air temperature was lowered while the CO2 level was increased, which lowered overall leaf temperatures to those measured for leaves grown under ambient levels of CO2. Aphid population growth on plants grown under elevated CO2 and reduced air temperature was not significantly greater than on plants grown under ambient levels of CO2. By increasing Glycine max leaf temperature, elevated CO2 may increase populations of Aphis glycines and their impact on crop productivity.  相似文献   

5.
This study was conducted to determine the response in leaf growth and gas exchange of soybean (Glycine max Merr.) to the combined effects of water deficits and carbon dioxide (CO2) enrichment. Plants grown in pots were allowed to develop initially in a glasshouse under ambient CO2 and well-watered conditions. Four-week old plants were transferred into two different glasshouses with either ambient (360 μmol mol-1) or elevated (700 μmol mol-1) CO2. Following a 2-day acclimation period, the soil of the drought-stressed pots was allowed to dry slowly over a 2-week period. The stressed pots were watered daily so that the soil dried at an equivalent rate under the two CO2 levels. Elevated [CO2] decreased water loss rate and increased leaf area development and photosynthetic rate under both well-watered and drought-stressed conditions. There was, however, no significant effect of [CO2] in the response relative to soil water content of normalized leaf gas exchange and leaf area. The drought response based on soil water content for transpiration, leaf area, and photosynthesis provide an effective method for describing the responses of soybean physiological processes to the available soil water, independent of [CO2].  相似文献   

6.
Industrialisation has elevated atmospheric levels of CO2 from original 280 ppm to current levels at 400 ppm, which is estimated to double by 2050. Although high atmospheric CO2 levels affect insect interactions with host plants, the impact of global change on plant defences in response to insect attack is not completely understood. Recent studies have made advances in elucidating the mechanisms of the effects of high CO2 levels in plant–insect interactions. New studies have proposed that gene regulation and phytohormones regulate resource allocation from photosynthesis to plant defences against insects. Biochemical and molecular studies demonstrated that both defensive hormones jasmonic acid (JA) and ethylene (ET) participate in modulating chemical defences against herbivores in plants grown under elevated CO2 atmosphere rather than changes in C:N ratio. High atmospheric CO2 levels increase vulnerability to insect damage by down‐regulating both inducive and constitutive chemical defences regulated by JA and ET. However, elevated CO2 levels increase the JA antagonistic hormone salicylic acid that increases other chemical defences. How plants grown under elevated CO2 environment allocate primary metabolites from photosynthesis to secondary metabolism would help to understand innate defences and prevent future herbivory in field crops. We present evidence demonstrating that changes in chemical defences in plants grown under elevated CO2 environment are hormonal regulated and reject the C:N hypothesis. In addition, we discuss current knowledge of the mechanisms that regulate plants defences against insects in elevated CO2 atmospheres.  相似文献   

7.
Elevated levels of CO2, equivalent to those projected to occur under global climate change scenarios, increase the susceptibility of soybean foliage to herbivores by down-regulating the expression of genes related to the defense hormones jasmonic acid and ethylene; these in turn decrease the gene expression and activity of cysteine proteinase inhibitors (CystPIs), the principal antiherbivore defenses in foliage. To examine the effects of elevated CO2 on the preference of Japanese beetle (JB; Popillia japonica) for leaves of different ages within the plant, soybeans were grown at the SoyFACE facility at the University of Illinois at Urbana-Champaign. When given a choice, JB consistently inflicted greater levels of damage on older leaves than on younger leaves, and there was a trend for a greater preference for young leaves grown under elevated CO2 compared to those grown under ambient CO2. More heavily damaged older leaves and those grown under elevated CO2 had reduced CystPI activity, and JB that consumed leaves with lower CystPI activity had correspondingly greater gut proteinase activity. Younger leaves with higher CystPI activity and photosynthetic rates may contribute disproportionately to plant fitness and are more protected against herbivore attack than older foliage. Cysteine proteinase inhibitors are potent defenses against JB, and the effectiveness of this defense is modulated by growth under elevated CO2 as well as leaf position.  相似文献   

8.
Concentration of atmospheric CO2 and temperature have both been rising for the last three decades. In this century, the temperature has been predicted to rise by 2–5 °C and the CO2 concentration to double. These changes may affect the primary and secondary metabolism of plants and thus have implications for other trophic levels. However, the biotic interactions in changing climate conditions are poorly known. In this study, two questions were addressed: (i) How will climate change affect growth and the amounts of secondary compounds in flexible plant species? and (ii) How will this affect herbivores living on this species. Four clones of the dark‐leaved willow (Salix myrsinifolia (Salisb.)) seedlings were grown in closed‐top chambers with two controlled factors: concentration of atmospheric CO2 and temperature (T). There were four combinations of these factors, each combination replicated four times (total of 16 chambers): (i) Control CO2 (350 ppm) and control T, (ii) Elevated CO2 (700 ppm) and control T, (iii) Control CO2 and elevated T (2 °C), and (iv) Elevated CO2 and elevated T. Stem growth and aerial biomass of the plants were determined; and the leaf phenolics, nitrogen and water concentrations were analysed. In addition the growth rate of larvae and feeding preference of adults of a specialist herbivore, the chrysomelid beetle Phratora vitellinae (L.), on the treated willow leaves were measured. Elevated temperature and CO2 concentration increased the stem biomass and elevated CO2 increased leaf biomass and total aerial biomass of the willows. Patterns of biomass allocation were different in different temperature treatments. At elevated temperature there was less branch and leaf material in relation to stems than at the control temperature. Moreover, patterns of biomass allocation differed among clones. CO2 enhancement increased the specific leaf weight (SLW) and reduced both water and nitrogen content of the leaves, however, leaf area was unaffected by the treatments. Carbon dioxide (CO2) and T enhancement reduced the concentrations of several phenolic compounds in the leaves. Phenolic compounds, nutrients, and water in the leaves might be diluted partly due to increased carbon allocation to different structures (e.g. thickening of cell wall and increase of trichomes, etc.). In some cases plant clones showed specific responses to treatments. The CO2 enhancement reduced the relative growth rate (RGR) of the beetle larvae, and in contrast, temperature elevation increased it. Adult beetles did not clearly discriminate between willow leaves grown in different T and CO2 environments, but tended to eat more leaf material from chambers with doubled CO2 concentration. At elevated CO2 adult beetles may need to eat more leaf material in order to reproduce, which may in turn prolong the life cycles, increasing the risk of being eaten and possibly affecting ability to overwinter successfully. Overall, climate change may significantly modify the dynamic interaction between willow and beetle populations.  相似文献   

9.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

10.
Experiments were performed to determine if growth at elevated partial pressure of CO2 altered the sensitivity of leaf water vapour conductance and rate of CO2 assimilation to the leaf-to-air difference in the partial pressure of water vapour (Δw). Comparisons were made between plants grown and measured at 350 and 700 μPa Pa?1 partial pressures of CO2 for amaranth, soybean and sunflower grown in controlled environment chambers, soybean grown outdoors in pots, and orchard grass grown in field plots. In amaranth, soybean and orchard grass, both the absolute and the relative sensitivity of conductance to Δw at the leaf surface were less in plants grown and measured at the elevated CO2. In sunflower, there was no change in the sensitivity of conductance to Δw for the two CO2 partial pressures. Tests in soybeans and amaranth showed that the change in sensitivity resulted from elevated CO2 during the measurement of the Δw response. Assimilation rate of CO2 was not altered by Δw in amaranth, which has C4 metabolism. In sunflower, the assimilation rate of plants grown and measured at elevated CO2 was insensitive to Δw, consistent with the response of assimilation rate to intercellular CO2 partial pressure in the prevailing range. In soybean, the sensitivity of assimilation rate to Δw was not different between CO2 treatments, in contrast to what would be expected from the response of assimilation rate to intercellular CO2 partial pressure.  相似文献   

11.
Salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and their interactions mediate plant responses to pathogen and herbivore attack. JA-SA and JA-ET cross-signaling are well studied, but little is known about SA-ET cross-signaling in plant-herbivore interactions. When the specialist herbivore tobacco hornworm (Manduca sexta) attacks Nicotiana attenuata, rapid and transient JA and ET bursts are elicited without significantly altering wound-induced SA levels. In contrast, attack from the generalist beet armyworm (Spodoptera exigua) results in comparatively lower JA and ET bursts, but amplified SA bursts. These phytohormone responses are mimicked when the species' larval oral secretions (OSSe and OSMs) are added to puncture wounds. Fatty acid-amino acid conjugates elicit the JA and ET bursts, but not the SA burst. OSSe had enhanced glucose oxidase activity (but not β-glucosidase activity), which was sufficient to elicit the SA burst and attenuate the JA and ET levels. It is known that SA antagonizes JA; glucose oxidase activity and associated hydrogen peroxide also antagonizes the ET burst. We examined the OSMs-elicited SA burst in plants impaired in their ability to elicit JA (antisense [as]-lox3) and ET (inverted repeat [ir]-aco) bursts and perceive ET (35s-etr1b) after fatty acid-amino acid conjugate elicitation, which revealed that both ET and JA bursts antagonize the SA burst. Treating wild-type plants with ethephone and 1-methylcyclopropane confirmed these results and demonstrated the central role of the ET burst in suppressing the OSMs-elicited SA burst. By suppressing the SA burst, the ET burst likely facilitates unfettered JA-mediated defense activation in response to herbivores that otherwise would elicit SA.  相似文献   

12.
Influence of elevated carbon dioxide on water relations of soybeans   总被引:8,自引:1,他引:7       下载免费PDF全文
Soybean (Glycine max L. Merrill cv `Bragg') plants were grown in pots at six elevated atmospheric CO2 concentrations and two watering regimes in open top field chambers to characterize leaf xylem potential, stomatal resistance and conductance, transpiration, and carbohydrate contents of the leaves in response to CO2 enrichment and water stress conditions. Groups of plants at each CO2 concentration were subjected to water stress by withholding irrigation for 4 days during the pod-filling stage.

Under well watered conditions, the stomatal conductance of the plants decreased with increasing CO2 concentration. Therefore, although leaf area per plant was greater in the high CO2 treatments, the rate of water loss per plant decreased with CO2 enrichment. After 4 days without irrigation, plants in lower CO2 treatments showed greater leaf tissue damage, lower leaf water potential, and higher stomatal resistance than high CO2 plants. Stomatal closure occurred at lower leaf water potentials for the low CO2 grown plants than the high CO2 grown plants. Significantly greater starch concentrations were found in leaves of high CO2 plants, and the reductions in leaf starch and increases in soluble sugars due to water stress were greater for low CO2 plants. The results showed that even though greater growth was observed at high atmospheric CO2 concentrations, lower rates of water use delayed and, thereby, prevented the onset of severe water stress under conditions of low moisture availability.

  相似文献   

13.
Global change, such as elevated CO2, may alter interactions between invasive plants and biocontrol agents, impacting biocontrol efficacy. Here, we conducted four experiments in Texas, USA to test how elevated CO2 influences an invasive plant (Alternanthera philoxeroides) and its interactions with an introduced biocontrol beetle (Agasicles hygrophila) in terrestrial (well-watered) and flooded environments. We grew plants for 9 months in ambient or elevated CO2 (800 ppm) chambers in continuously flooded or well-watered conditions. In no-choice trials, flooding increased leaf toughness and decreased beetle consumption but beetles only oviposited on ambient CO2 leaves. In choice trials, beetles preferred to feed and oviposit on terrestrial plants but were also less likely to damage elevated CO2 leaves. Caged beetle populations were larger in terrestrial conditions than aquatic conditions for a second set of plants grown in the chambers. With a third set of plants grown in the ambient or elevated CO2 chambers, damage for plants placed in the field (aquatic setting) was higher for plants grown in terrestrial conditions vs. flooded conditions at ambient CO2. Our results suggest that elevated CO2 will have minor effects on the efficacy of this biocontrol agent by decreasing oviposition and number of leaves damaged, and hydrologic environment may affect invasive plant performance by altering herbivore oviposition and feeding preferences. A broader understanding of the effects of global change on biocontrol will help prevent and manage future spread of invasive plants.  相似文献   

14.
The effect of elevated O3 on tomato plants of three different genotypes (wild-type, a jasmonic acid (JA) defense-enhanced genotype (35S) and a JA-deficient genotype (spr2)) grown in association with the whitefly Bemisia tabaci Gennadius biotype B was examined in the field in open-top chambers. We experimentally tested the hypothesis that elevated O3 tends to reduce the nutrition of tomato plants, and to increase the SA-dependent pathway defenses and the secondary metabolites, and therefore decrease the population fitness of the whitefly. The results show that for all three tomato genotypes, elevated O3 reduced the soluble sugars and free amino acids, increased the phenylalanine ammonia-lyase enzyme activity and the accumulated salicylic acid (SA), and up-regulated the pathogenesis-related protein (PR1), which is commonly considered to be the whitefly-resistance gene product involved in SA-dependent defense. Elevated O3 did not affect the JA level in any of the three plant genotypes, but it increased the levels of some secondary metabolites, including total phenolics and condensed tannins. Elevated O3 prolonged the developmental time of whiteflies fed on the three plant genotypes, and it also reduced the fecundity and the intrinsic rate of increase of whiteflies fed on either the 35S or the wild-type plants. These results suggest that elevated O3 reduces the nutrition of tomato plants and enhances their SA content, relative PR mRNA expression and secondary metabolism, resulting in decreased fitness of whiteflies on these tomato plants.  相似文献   

15.
In a three-year free-air CO2 enrichment study (Mini-FACE), spring wheat associated with typical arable weeds were grown under present and elevated atmospheric carbon dioxide concentrations [CO2] (ambient air+150 μmol mol?1). Analyses of plant stable carbon isotope ratios and in vivo measurements of leaf gas exchange were used to describe the CO2 effects on water relations. For most species examined elevated [CO2] significantly increased the intrinsic water-use efficiency (A/gs) as derived from carbon isotope analyses. In some of the species, seasonal averages of the ratio between leaf internal to atmospheric CO2 (ci/ca) were found to be significantly reduced by elevated [CO2]. Periodic leaf gas exchange measurements confirmed the increased water-use efficiency, but significant CO2 effects became evident only over the entire season by carbon isotope analysis. In both types of analysis conducted, spring wheat was found to react significantly different from all other species examined. The relation between A/gs and biomass production was significantly influenced by elevated [CO2] in all three years of the study. At the end of the drier growing seasons 2003 and 2004, the soil water content tended to be increased in the CO2 enriched plots indicating a water saving effect. These observations demonstrate the impact of elevated [CO2] on plant water relations with a likely positive feedback leading to higher soil water availability. Due to the differences in the CO2 responses of spring wheat compared to the weeds we suggest that rising [CO2] may cause shifts in the species composition of crop-weed communities.  相似文献   

16.
This study tested the hypothesis that inoculation of soybean (Glycine max Merr.) with a Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean response to elevated [CO2]. In field experiments at the Soybean Free Air CO2 Enrichment facility, inoculation of soybean with USDA110 increased nodule occupancy from 5% in native soil to 54% in elevated [CO2] and 34% at ambient [CO2]. Despite this success, inoculation with USDA110 did not result in greater photosynthesis, growth or seed yield at ambient or elevated [CO2] in the field, presumably due to competition from native rhizobia. In a growth chamber experiment designed to study the effects of inoculation in the absence of competition, inoculation with USDA110 in sterilized soil resulted in nodule occupation of >90%, significantly greater 15N2 fixation, photosynthetic capacity, leaf N and total plant biomass compared with plants grown with native soil bacteria. However, there was no interaction of rhizobium fertilization with elevated [CO2]; inoculation with USDA110 was equally beneficial at ambient and elevated [CO2]. These results suggest that selected rhizobia could potentially stimulate soybean yield in soils with little or no history of prior soybean production, but that better quality rhizobia do not enhance soybean responses to elevated [CO2].  相似文献   

17.
Rozema  J. 《Plant Ecology》1993,104(1):173-190
In general, C3 plant species are more responsive to atmospheric carbon dioxide (CO2) enrichment than C4-plants. Increased relative growth rate at elevated CO2 primarily relates to increased Net Assimilation Rate (NAR), and enhancement of net photosynthesis and reduced photorespiration. Transpiration and stomatal conductance decrease with elevated CO2, water use efficiency and shoot water potential increase, particularly in plants grown at high soil salinity. Leaf area per plant and leaf area per leaf may increase in an early growth stage with increased CO2, after a period of time Leaf Area Ratio (LAR) and Specific Leaf Area (SLA) generally decrease. Starch may accumulate with time in leaves grown at elevated CO2. Plants grown under salt stress with increased (dark) respiration as a sink for photosynthates, may not show such acclimation to increased atmospheric CO2 levels. Plant growth may be stimulated by atmospheric carbon dioxide enrichment and reduced by enhanced UV-B radiation but the limited data available on the effect of combined elevated CO2 and ultraviolet B (280–320 nm) (UV-B) radiation allow no general conclusion. CO2-induced increase of growth rate can be markedly modified at elevated UV-B radiation. Plant responses to elevated atmospheric CO2 and other environmental factors such as soil salinity and UV-B tend to be species-specific, because plant species differ in sensitivity to salinity and UV-B radiation, as well as to other environmental stress factors (drought, nutrient deficiency). Therefore, the effects of joint elevated atmospheric CO2 and increased soil salinity or elevated CO2 and enhanced UV-B to plants are physiologically complex.  相似文献   

18.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

19.
We analysed the impact of elevated CO2 on water relations, water use efficiency and photosynthetic gas exchange in barley (Hordeum vulgare L.) under wet and drying soil conditions. Soil moisture was less depleted under elevated compared to ambient [CO2]. Elevated CO2 had no significant effect on the water relations of irrigated plants, except on whole plant hydraulic conductance, which was markedly decreased at elevated compared to ambient CO2 concentrations. The values of relative water content, water potential and osmotic potential were higher under elevated CO2 during the entire drought period. The better water status of water-limited plants grown at elevated CO2 was the result of stomatal control rather than of osmotic adjustment. Despite the low stomatal conductance produced by elevated CO2, net photosynthesis was higher under elevated than ambient CO2 concentrations. With water shortage, photosynthesis was maintained for longer at higher rates under elevated CO2. The reduction of stomatal conductance and therefore transpiration, and the enhancement of carbon assimilation by elevated CO2, increased instantaneous and whole plant water use efficiency in both irrigated and droughted plants. Thus, the metabolism of barley plants grown under elevated CO2 and moderate or mild water deficit conditions is benefited by increased photosynthesis and lower transpiration. The reduction in plant water use results in a marked increase in soil water content which delays the onset and severity of water deficit.  相似文献   

20.
Background and Aims Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2.Methods A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg−1 (deficient) or 60 mg P kg−1 (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380–400 ppm) or eCO2 (550–580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi).Key Results Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers.Conclusions Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号