首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based comparative genomic hybridization (CGH) allows high-resolution screening of copy number abnormalities by hybridizing differentially labeled test and reference genomes to arrays of robotically spotted clones. To assess the applicability of this technique in the diagnosis of (sub)telomeric imbalances, we here describe a blinded study, in which DNA from 20 patients with known cytogenetic abnormalities involving one or more telomeres was hybridized to an array containing a validated set of human-chromosome-specific (sub)telomere probes. Single-copy-number gains and losses were accurately detected on these arrays, and an excellent concordance between the original cytogenetic diagnosis and the array-based CGH diagnosis was obtained by use of a single hybridization. In addition to the previously identified cytogenetic changes, array-based CGH revealed additional telomere rearrangements in 3 of the 20 patients studied. The robustness and simplicity of this array-based telomere copy-number screening make it highly suited for introduction into the clinic as a rapid and sensitive automated diagnostic procedure.  相似文献   

2.
Formalin-fixed paraffin embedded (FFPE) tumor tissue provides an opportunity to perform retrospective genomic studies of tumors in which chromosomal imbalances are strongly associated with oncogenesis. The application of comparative genomic hybridization (CGH) has led to the rapid accumulation of cytogenetic information on osteosarcoma (OS); however, the limited resolving power of metaphase CGH does not permit precise mapping of imbalances. Array CGH allows quantitative detection and more precise delineation of copy number aberrations in tumors. Unfortunately the high cost and lower density of BACs on available commercial arrays has limited the ability to comprehensively profile copy number changes in tumors such as OS that are recurrently subject to genomic imbalance. In this study a cDNA/EST microarray including 18,980 human cDNAs (which represent all 22 pairs of autosomal chromosomes and chromosome X) was used for CGH analysis of eight OS FFPE. Chromosomes 1, 12, 17, and X harbored the most imbalances. Gain/amplification of X was observed in 4/8 OS, and in keeping with other recent genomic analyses of OS, gain/amplification of 17p11.2 was often accompanied by a distal deletion in the region of the p53 gene. Gain/amplification of the X chromosome was verified using interphase FISH carried out on a subset of OS FFPE sections and OS tissue arrays.  相似文献   

3.
4.
5.
Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.  相似文献   

6.
Chromosomal imbalances such as deletions and amplifications are common rearrangements in most tumors. Specific rearrangements are consistently associated with specific tumor types or stages, implicating the role of the genes in a region of chromosomal imbalance in tumor initiation and progression. The development of comparative genomic hybridization (CGH) has obviated the need to obtain metaphase spreads from tumors, so that the chromosomal imbalances in many solid tumors may be revealed using an extracted genomic DNA sample. However, the resolution of the cytogenetic method remains and the extreme technical difficulty of CGH has restricted its use. Conceptually, DNA microarray-based CGH is an obvious solution to all of the limitations of conventional CGH. Although arrays have been used for CGH studies, their success has been limited by poor specific signal-to-noise ratios. Here we demonstrate a microarray-based CGH method that allows reliable detection of chromosomal deletions and amplifications with high resolution. Our microarray system is fundamentally different from most current microarray technologies in that activated DNA is printed on natural glass surfaces while other systems almost exclusively focus on activating the surfaces, a strategy that invariably introduces hybridization backgrounds. The concept of using pre-modification may be generally applied for making arrays of other biological materials, as modifying the substrates will be more controllable in solution than on surfaces.  相似文献   

7.
8.
The emerging of high-throughput and high-resolution genomic technologies led to the detection of submicroscopic variants ranging from 1 kb to 3 Mb in the human genome. These variants include copy number variations (CNVs), inversions, insertions, deletions and other complex rearrangements of DNA sequences. This paper briefly reviews the commonly used technologies to discover both genomic structural variants and their potential influences. Particularly, we highlight the array-based, PCR-based and sequencing-based assays, including array-based comparative genomic hybridization (aCGH), representational oligonucleotide microarray analysis (ROMA), multiplex amplifiable probe hybridization (MAPH), multiplex ligation-dependent probe amplification (MLPA), paired-end mapping (PEM), and next-generation DNA sequencing technologies. Furthermore, we discuss the limitations and challenges of current assays and give advices on how to make the database of genomic variations more reliable. Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA020704).  相似文献   

9.
Only few selected cancer cells drive tumor progression and are responsible for therapy resistance. Their specific genomic characteristics, however, are largely unknown because high-resolution genome analysis is currently limited to DNA pooled from many cells. Here, we describe a protocol for array comparative genomic hybridization (array CGH), which enables the detection of DNA copy number changes in single cells. Combining a PCR-based whole genome amplification method with arrays of highly purified BAC clones we could accurately determine known chromosomal changes such as trisomy 21 in single leukocytes as well as complex genomic imbalances of single cell line cells. In single T47D cells aberrant regions as small as 1–2 Mb were identified in most cases when compared to non-amplified DNA from 106 cells. Most importantly, in single micrometastatic cancer cells isolated from bone marrow of breast cancer patients, we retrieved and confirmed amplifications as small as 4.4 and 5 Mb. Thus, high-resolution genome analysis of single metastatic precursor cells is now possible and may be used for the identification of novel therapy target genes.  相似文献   

10.
Data from ten years of research using comparative genomic hybridization (CGH) for the detection of chromosomal alterations in human solid tumors are concisely reviewed. By use of a basic methodology with some variations more or less specific patterns of genomic imbalances were found in a large number of tumors of various entities. Specific gains and losses of genomic material have not only opened the way to the detection of a series of cancer-related genes but also to clinical implications. Not only several areas of basic oncogenetic research, but also differential diagnosis, prognosis of disease progression, and therapeutic decisions have profited by CGH.  相似文献   

11.
Neuroblastoma is characterized by numerous recurrent large-scale chromosomal imbalances and gene amplifications which are associated with poor clinical outcome. The most common include MYCN amplification, loss of 1p, 3p and 11q, and gain of 17q genomic regions. Two of these abnormalities, MYCN amplification and loss of 11q, define different genetic subtypes of the disease with vastly different global gene expression profiles. The progress towards the identification of the genes and genetic pathways that have been affected by these abnormalities is reviewed and high resolution mapping of the chromosomal breakpoint regions using oligonucleotide array CGH (oaCGH) is discussed. oaCGH analysis is proving useful for both defining minimal regions of overlap of imbalances, as well as providing information on the molecular mechanisms that generate the chromosomal imbalances. These high resolution analyses have also permitted the detection of micro-deletions in the tumors that further assist in identifying genes important for neuroblastoma pathogenesis.  相似文献   

12.
13.
The development of high-throughput screening methods such as array-based comparative genome hybridization (array CGH) allows screening of the human genome for copy-number changes. Current array CGH strategies have limits of resolution that make detection of small (less than a few tens of kilobases) gains or losses of genomic DNA difficult to identify. We report here a significant improvement in the resolution of array CGH, with the development of an array platform that utilizes single-stranded DNA array elements to accurately measure copy-number changes of individual exons in the human genome. Using this technology, we screened 31 patient samples across an array containing a total of 162 exons for five disease genes and detected copy-number changes, ranging from whole-gene deletions and duplications to single-exon deletions and duplications, in 100% of the cases. Our data demonstrate that it is possible to screen the human genome for copy-number changes with array CGH at a resolution that is 2 orders of magnitude higher than that previously reported.  相似文献   

14.

BACKGROUND:

Mental retardation (MR) has a prevalence of 1-3% and genetic causes are present in more than 50% of patients. Chromosomal abnormalities are one of the most common genetic causes of MR and are responsible for 4-28% of mental retardation. However, the smallest loss or gain of material visible by standard cytogenetic is about 4 Mb and for smaller abnormalities, molecular cytogenetic techniques such as array comparative genomic hybridization (array CGH) should be used. It has been shown that 15-25% of idiopathic MR (IMR) has submicroscopic rearrangements detectable by array CGH. In this project, the genomic abnormalities were investigated in 32 MR patients using this technique.

MATERIALS AND METHODS:

Patients with IMR with dysmorphism were investigated in this study. Karyotype analysis, fragile X and metabolic tests were first carried out on the patients. The copy number variation was then assessed in a total of 32 patients with normal results for the mentioned tests using whole genome oligo array CGH. Multiple ligation probe amplification was carried out as a confirmation test.

RESULTS:

In total, 19% of the patients showed genomic abnormalities. This is reduced to 12.5% once the two patients with abnormal karyotypes (upon re-evaluation) are removed.

CONCLUSION:

The array CGH technique increased the detection rate of genomic imbalances in our patients by 12.5%. It is an accurate and reliable method for the determination of genomic imbalances in patients with IMR and dysmorphism.  相似文献   

15.
Genomic imbalances are a major cause of constitutional and acquired disorders. Therefore, aneuploidy screening has become the cornerstone of preimplantation, prenatal and postnatal genetic diagnosis, as well as a routine aspect of the diagnostic workup of many acquired disorders. Recently, array comparative genomic hybridization (array CGH) has been introduced as a rapid and high-resolution method for the detection of both benign and disease-causing genomic copy-number variations. Until now, array CGH has been performed using a significant quantity of DNA derived from a pool of cells. Here, we present an array CGH method that accurately detects chromosomal imbalances from a single lymphoblast, fibroblast and blastomere within a single day. Trisomy 13, 18, 21 and monosomy X, as well as normal ploidy levels of all other chromosomes, were accurately determined from single fibroblasts. Moreover, we showed that a segmental deletion as small as 34 Mb could be detected. Finally, we demonstrated the possibility to detect aneuploidies in single blastomeres derived from preimplantation embryos. This technique offers new possibilities for genetic analysis of single cells in general and opens the route towards aneuploidy screening and detection of unbalanced translocations in preimplantation embryos in particular.  相似文献   

16.
The majority of human cancers as well as many developmental abnormalities harbour chromosomal imbalances, many of which result in the gain and/or loss of genomic material. Conventional comparative genomic hybridisation (CGH) has been used extensively to map DNA copy number changes to chromosomal positions. The introduction of microarray CGH provided a powerful tool to precisely detect and quantify genomic aberrations and map these directly onto the sequence of the human genome. In the past several years, a number of different approaches towards array-based CGH have been undertaken. This paper reviews these approaches and presents some of the recently-developed applications of this new technology in both research and clinical settings.  相似文献   

17.
Analysis of array CGH data: from signal ratio to gain and loss of DNA regions   总被引:12,自引:0,他引:12  
MOTIVATION: Genomic DNA regions are frequently lost or gained during tumor progression. Array Comparative Genomic Hybridization (array CGH) technology makes it possible to assess these changes in DNA in cancers, by comparison with a normal reference. The identification of systematically deleted or amplified genomic regions in a set of tumors enables biologists to identify genes involved in cancer progression because tumor suppressor genes are thought to be located in lost genomic regions and oncogenes, in gained regions. Array CGH profiles should also improve the classification of tumors. The achievement of these goals requires a methodology for detecting the breakpoints delimiting altered regions in genomic patterns and assigning a status (normal, gained or lost) to each chromosomal region. RESULTS: We have developed a methodology for the automatic detection of breakpoints from array CGH profile, and the assignment of a status to each chromosomal region. The breakpoint detection step is based on the Adaptive Weights Smoothing (AWS) procedure and provides highly convincing results: our algorithm detects 97, 100 and 94% of breakpoints in simulated data, karyotyping results and manually analyzed profiles, respectively. The percentage of correctly assigned statuses ranges from 98.9 to 99.8% for simulated data and is 100% for karyotyping results. Our algorithm also outperforms other solutions on a public reference dataset. AVAILABILITY: The R package GLAD (Gain and Loss Analysis of DNA) is available upon request.  相似文献   

18.
19.
Exposure to genotoxic carcinogens in tobacco smoke is a major cause of lung cancer. However, the effect this has on DNA copy number and genomic stability during lung carcinogenesis is unclear. Here we used bacterial artificial chromosome array-based comparative genomic hybridization to examine the effect of NNK, a potent human lung carcinogen present in tobacco smoke, on the major genomic changes occurring during mouse lung adenocarcinogenesis. Observed were significantly more gross chromosomal changes in NNK-induced tumors compared with the spontaneous tumors. An average of 5.6 chromosomes were affected by large-scale changes in DNA copy number per NNK-induced tumor compared with only 2.0 in spontaneous lung tumors (p = 0.017). Further analysis showed that gains on chromosomes 6 and 8, and losses on chromosomes 11 and 14 were more common in NNK-induced tumors (p 相似文献   

20.
MOTIVATION: The resolution at which genomic alterations can be mapped by means of oligonucleotide aCGH (array-based comparative genomic hybridization) is limited by two factors: the availability of high-quality probes for the target genomic sequence and the array real-estate. Optimization of the probe selection process is required for arrays that are designed to probe specific genomic regions in very high resolution without compromising probe quality constraints. RESULTS: In this paper we describe a well-defined optimization problem associated with the problem of probe selection for high-resolution aCGH arrays. We propose the whenever possible in-cover as a formulation that faithfully captures the requirement of probe selection problem, and provide a fast randomized algorithm that solves the optimization problem in O(n logn) time, as well as a deterministic algorithm with the same asymptotic performance. We apply the method in a typical high-definition array design scenario and demonstrate its superiority with respect to alternative approaches. AVAILABILITY: Address requests to the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号