首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacities of immature and mature rat brain myelin, bovine myelin and human myelin to be agglutinated by soya-bean agglutinin, Ricinus communis agglutinin, wheatgerm agglutinin, and Lotus tetragonolobus agglutinin were examined. The first two lectins, which are specific for galactose and N-acetylgalactosamine, strongly agglutinated immature and mature rat myelin, weakly agglutinated bovine myelin, but did not affect human myelin. The other myelin and lectin combinations resulted in very weak or no agglutination. [(3)H]Fucose-labelled glycoproteins of purified adult rat brain myelin were solubilized with sodium dodecyl sulphate and allowed to bind to concanavalin A-Sepharose and each of the other lectins mentioned above, which had been immobilized on agarose. About 60% of the radioactive fucose was in glycoproteins that bound to concanavalin A-Sepharose and these glycoproteins could be eluted with solutions containing methyl alpha-d-mannoside and sodium dodecyl sulphate. Periodate/Schiff staining or radioactive counting of analytical gels showed that most of the major myelin-associated glycoprotein (apparent mol.wt. approx. 100000) bound to the concanavalin A, whereas the glycoproteins that did not bind were mostly of lower molecular weight. Preparative polyacrylamide-gel electrophoresis of the glycoprotein fraction that was eluted with methyl alpha-d-mannoside yielded a relatively pure preparation of the myelin-associated glycoprotein. Similar results were obtained with each of the other lectins, i.e. the myelin-associated glycoprotein was in the fraction that bound to the immobilized lectin. Double-labelling experiments utilizing [(3)H]fucose-labelled glycoproteins from adult myelin and [(14)C]fucose-labelled glycoproteins from 14-day-old rat brain myelin did not reveal any difference in the binding of the mature and immature glycoproteins to any of the immobilized lectins. The results in this and the preceding paper [McIntyre, Quarles & Brady (1979) Biochem. J.183, 205-212] suggest that the myelin-associated glycoprotein is one of the principal receptors for concanavalin A and other lectins in myelin, and that this property can be utilized for the purification of this glycoprotein.  相似文献   

2.
Purified myelin fractions from the central nervous system contain one major myelin-associated glycoprotein and approximately 16 minor glycoproteins. While the genuine association of the major myelin-associated glycoprotein with the oligodendroglial myelin unit is demonstrated, the possibility exists that several of the minor glycoproteins have their origin in contaminating membranes not related to myelin. The major myelin-associated glycoprotein is probably not present in compacted myelin, but immunocytochemical and subfractionation studies indicate that it is confined to the periaxonal and paranodal region of the myelin sheath. In experimental demyelination and multiple sclerosis, the major glycoprotein is the first myelin constituent to be affected. Its localization on the membrane surface where myelin and axolemma are in close contact, and other indirect evidence indicate that the major glycoprotein, and possibly other myelin-associated glycoproteins, could play a role in the process of myelination and myelin maintenance.  相似文献   

3.
The glycoproteins of the membranes of bovine chromaffin granules were characterized by two polyacrylamide gel electrophoresis systems. Five components (I-V) were demonstrated with apparent molecular weights ranging in the unreduced form from 45,000 to 150,000. Glycoprotein I was identified as the enzyme dopamine β-hydroxylase. Four of these glycoproteins (with the exception of component IV) were apparently also present in the membranes of pig and horse chromaffin granules. The soluble proteins of chromaffin granules contained at least three glycoproteins. Only glycoprotein I (dopamine β-hydroxylase) was present both in the soluble content and in the membranes of chromaffin granules. Affinity chromatography with lectins demonstrated that from the soluble proteins only dopamine β-hydroxylase was adsorbed by concanavalin A, whereas none of these proteins reacted with wheat germ lectin and Ricinus communis agglutinin. Three membrane proteins including dopamine β-hydroxylase and glycoprotein II as major components were adsorbed by concanavalin A, whereas wheat germ lectin bound only component II and a small amount of component III. By electron microscopy it was demonstrated that concanavalin A did not bind to intact chromaffin granules whereas ruthenium red and cationized ferritin did. Isotope labelling after galactose oxidase treatment revealed that at least the carbohydrate portion of the major glycoproteins is present on the inner side of the granule membranes facing the content.  相似文献   

4.
Abstract: Glycoproteins from central nervous system myelin were evaluated for developmental alterations in their carbohydrate composition by autoradiographic analysis of radioiodinated lectin binding after separation by high-resolution sodium dodecyl sulfate-pore gradient slab gel electrophoresis (SDS-PGE). Sixteen lectin-binding components were assessed in highly purified myelin preparations from 15-day, 18-day, and adult rat brains, using the lectins Triticum vulgaris (wheat germ agglutinin) and Ulex europeus (gorse agglutinin I). Developmental changes in lectin binding for individual glycoproteins were evaluated semiquantitatively by comparing densitometric scans of the auto radiographs. Both increases and decreases in lectin binding for individual components were observed as a consequence of development, as well as the appearance and disappearance of lectin binding to three low-molecular-weight components. No changes in electrophoretic mobility and hence glycoprotein molecular weight were observed in any components when using these lectins. These developmental changes in lectin binding suggest that increases in glycoprotein (receptor) density occur, as well as an elaboration of oligosaccharide branching for individual glycoproteins. In addition, the appearance of a new glycoprotein in the adult myelin membrane could imply a new functional role not present in the immature membrane. These observations suggest that dynamic alterations of myelin-associated glycoproteins occur during development. Such developmental regulation of membrane glycoproteins increases the significance of their potential role in myelination and myelin maintenance.  相似文献   

5.
Concanavalin A strongly agglutinates purified fragments of immature and mature rat brain myelin, but only weakly agglutinates mature bovine and human myelin fragments. A sensitive method involving [3H]concanavalin binding to sodium dodecyl sulphate/polyacrylamide gels was used to detect the concanavalin A-binding proteins in purified myelin. When applied to mature rat brain myelin proteins that had been labelled in vivo with [14C]fucose, the distribution of the [3H]concanavalin A on the gel was very similar to that of [14C]fucose with the major peak corresponding to the major myelin-associated glycoprotein. The technique revealed that the immature form of the myelin-associated glycoprotein with a slightly larger apparent molecular weight also bound concanavalin A, and that in purified immature rat myelin the quantitative importance of some of the other glycoproteins in binding concanavalin A was increased relative to the myelin-associated glycoprotein. The separated proteins of bovine and human myelin bound more [3H]-concanavalin A than those of rat myelin. In these species, the myelin-associated glycoprotein was a major concanavalin A-binding protein, although two higher-molecular-weight glycoproteins also bound significant quantities of [3H]concanavalin A. The results indicate that there are receptors for concanavalin A on the surface of rat, bovine and human myelin membranes and suggest that the myelin-associated glycoprotein is one of the principal receptors.  相似文献   

6.
Two fractions were isolated by continuous density gradient centrifugation from total particulate matter of rabbit sciatic nerves: a minor fraction, B, consisting of small-sized membrane fragments and a major fraction, C, of characteristic multilayered myelin figures, with maxima at 0.33 and 0.58 M-sucrose, respectively. In comparison with C, fraction B was enriched in CNPase and alkaline phosphatase activities and the P0, 23K and Z proteins, but was virtually devoid of basic protein. The glycoprotein composition of all fractions was examined with four fluorescein isothiocyanate-labelled lectins (WGA, Con A, RCA-60, U.E.). These revealed the presence of six glycoproteins in all fractions with similar lectin binding capacities and molecular weights ranging from 35,500 to 16,000, of which P0 was the predominant component. Material found on the heavy side of fraction C was characterized by the presence of a multitude of glycoproteins which bound variable proportions of the four different lectins, suggesting substantial variations in their carbohydrate moieties. Their absence from the central portion of fraction C points to a location other than that of compact PNS myelin.  相似文献   

7.
Abstract— Myelin/oligodendrocyte glycoprotein (MOG) is a quantitatively minor component of CMS myelin. In this study, human MOG was found to express the L2/HNK-1 epitope on N-linked oligosaccharide structures. This carbohydrate epitope has been found previously in three other characterized human myelin glycoproteins: the my-elin-associated glycoprotein, P0, and the oligodendrocyte-myelin glycoprotein. It seems, therefore, that the L2/HNK-1 epitope is expressed frequently in human myelin glycoproteins. Serial lectin affinity chromatography of 14C-glycopeptides indicated that MOG N -oligosaccharide structures are mainly of the complex type, accounting for 77.8% of total radioactivity. In contrast with myelin-asso-ciated glycoprotein and P0, which express the L2/HNK-1 epitope on fucosylated structures, in MOG the epitope was detected on all glycopeptide fractions obtained by serial lectin affinity chromatography, although a preferential expression of the L2/HNK-1 epitope was observed on fucosylated structures. Finally, the data indicated that, as for other human myelin glycoproteins, only a subpopulation of MOG molecules expresses the L2/HNK-1 epitope.  相似文献   

8.
Radioiodinated lectins were used to detect glycoproteins of peripheral nervous system (PNS) myelin (rat, human, bovine) and cultured rat Schwann cells. Proteins were resolved by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and transferred to nitrocellulose filters. The filters were overlaid with radioiodinated lectins of known saccharide affinities. These included concanavalin A, Helix pomatia, Limulus polyphemus, Maclura pomifera, peanut, soybean, Ulex europaeus, and wheat germ agglutinins. Inclusion of the appropriate monosaccharide in the overlay solution (0.2 M) inhibited lectin binding to the nitrocellulose-fixed proteins. Fluorography permitted identification of 26 myelin glycoproteins and many more in Schwann cells. All lectins labeled a band present in myelin, but not Schwann cells, corresponding to the major PNS myelin protein, P0. Our attention focused on a high-molecular-weight myelin glycoprotein [apparent molecular weight (Mr) 170,000], which appeared abundant by Coomassie Blue staining and which was heavily labeled by all lectins except concanavalin A. A protein with approximately this Mr and lectin-binding pattern was present in human and bovine PNS myelin as well, but not detected in rat Schwann cells, CNS myelin, liver and fibroblast homogenates, or cultured bovine oligodendroglia. Hence this 170,000 Mr glycoprotein is apparently unique to PNS myelin.  相似文献   

9.
Glycoproteins from luminal fluid of the mouse cauda epiciidymidis have been compared with glycoproteins from Triton X-100 extracts of mouse spermatozoa from varying regions of the epididymis, using lectins with specific affinity for different sugar residues. Concanavalin A recognizes 11 glycocomponents on Western blots of fractionated caudal fluid; wheat germ agglutinin (WGA) binds 12 proteins; Ulex europaeus agglutinin (UEA) binds seven; and Dolichos biflorus agglutinin (DBA) recognizes nine. Several of these glycoproteins display an affinity for more than one lectin, indicating a diversity in their exposed carbohydrate residues; whereas other proteins bind only one of the four lectins used. The results also show that some glycoproteins exhibit a higher affinity for particular lectins. Eight glycoproteins of similar mobility and lectin-binding characteristics are detected in Triton X-100 extracts of spermatozoa from different regions of the epididymis and in caudal fluid. The lectin affinity of some proteins appears or increases in spermatozoa from distal epididymal regions (54 kD, 32 kD), whereas the lectin affinity of others decreases (29 kD, 40 kD). There are differences in lectin affinities between proteins in sperm extracts and in caudal fluid. Some proteins show an affinity for three or four lectins in caudal fluid, but proteins of similar electrophoretic mobility in sperm extracts bind only one or two of the lectins. These data show that glycoproteins of similar mobility are present in caudal fluid and in Triton-X-100 sperm extracts, implying a potential interaction between caudal fluid components and epididymal sperm.  相似文献   

10.
The major platelet membrane glycoproteins have been solubilized in 1.0% sodium deoxycholate and subjected to affinity chromatography on the lectins from Lens culinaris, wheat germ and Abrus precatorius. Polyacrylamide gel electrophoresis in the presence and absence of a reducing agent together with the differential binding of the lectins to the glycoproteins permitted the distinction of at least seven separate glycoprotein entities. A new nomenclature for the glycoproteins is proposed to accomodate the additional data.Using combinations of lectin columns, glycoproteins Ia and Ib could be prepared in a pure state and IIb and IIIa could be greatly purified. The binding of lectins to glycoprotein Ib has been strongly implicated as a necessary step in the aggregation response of platelets to lectins.  相似文献   

11.
We report here the use of high-performance lectin affinity enrichment of glycoproteins at microscale levels using a series of silica-bound lectins. The potential of this approach is being demonstrated for the glycoprotein enrichment from microliter volumes of human blood serum. Individual injections of sample to the affinity microcolumns packed with four lectin materials with different glycan specificities (Con A, SNA-I, UEA-I, PHA-L), followed by off-line reversed-phase pre-fractionation and nano-LC/MS/MS, permitted identification of 108 proteins in the lectin-bound fractions spanning a concentration dynamic range of 7-10 orders of magnitude. In contrast, multi-lectin microcolumn affinity chromatography, an alternative enrichment approach allowed identification of only 67 proteins. An attractive feature of high-performance lectin affinity chromatography at microscale levels is the substantial reduction of sample losses that are commonly experienced with extensive sample preparation needed for larger sample volumes.  相似文献   

12.
Lectins are proteins that specifically bind to a particular carbohydrate structure. Affinity chromatography with immobilized lectins is a quite effective technique not only for the fractionation of glycoproteins or oligosaccharides but also their structural assessment. In this article, we focus on the separation of glycopeptides and oligosaccharides derived from glycoproteins by affinity chromatography on immobilized lectin columns.  相似文献   

13.
Gel electrophoresis, lectin affinity blotting, and endoglycosidase H digestion have been used to analyze the glycoprotein profiles of bloodstream and procyclic forms of Trypanosoma brucei brucei and T. b. gambiense. Proteins resolved by polyacrylamide gel electrophoresis were stained with silver nitrate or electrophoretically transferred to nitrocellulose and probed with a horseradish peroxidase conjugate of either concanavalin A or wheat germ agglutinin. Silver staining showed, as expected, that the expression of the variant specific glycoprotein was restricted to the bloodstream forms. Twenty-three concanavalin A binding proteins were resolved in blots of bloodstream forms. Concanavalin A binding molecules corresponding in electrophoretic mobility to 21 of these 23 bloodstream form glycoproteins were detected in blots of procyclic forms. The two concanavalin A binding glycoproteins present only in bloodstream form extracts were variant specific glycoprotein and an 81-kDa protein designated glycoprotein 81b. One concanavalin A binding molecule of 84 kDa, glycoprotein 84p, was detected only in procyclic forms. The 19 major wheat germ agglutinin binding glycoproteins expressed by bloodstream forms were not detected in procyclic forms; only small proteins or protein fragments in procyclic form extracts bound wheat germ agglutinin. Incubating transferred proteins in endoglycosidase H eliminated subsequent binding of concanavalin A to most of the 22 common glycoproteins of bloodstream forms. Three major concanavalin A binding glycoproteins of bloodstream forms, variant specific glycoprotein, glycoprotein 81b, and a 110-kDa molecule (glycoprotein 110b), and other minor glycoproteins carried sugar chains that resisted endoglycosidase H digestion. In contrast, concanavalin A did not bind to any procyclic form glycoproteins, including a 110-kDa concanavalin A binding molecule (glycoprotein 110p) after endoglycosidase H treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lectin Receptors in Central Nervous System Myelin   总被引:14,自引:12,他引:2  
Abstract: Proteins from central nervous system myelin were separated by high-resolution, sodium dodecyl sulfate-pore gradient slab gel electrophoresis and the glycoproteins were detected by autoradiography after direct application of radioiodinated lectins. A surprising heterogeneity of lectin binding proteins was found associated with this highly purified membrane fraction. Iodinated wheat germ agglutinin, which has a monosaccharide specificity for N-acetyl-D-glucosamine and N-acetylneuraminic acid, revealed six major bands and two minor bands. By correlating the molecular weights (Mr) of radioiodinated protein standards with the gel concentration at the position reached by the protein (%T) using the relationship log(Mr) versus log(%T) for gradient gel systems, molecular weight estimates of 128, 300, 109, 800, 75, 300, 48, 800, 26, 100 and 23, 700 were obtained for the major glycoprotein bands and molecular weights of 98, 300 and 86, 600 for the minor bands. When the isolated myelin was extracted with chloroform-methanol-a procedure that removes the major myelin proteins, including the proteolipid protein and most of the basic proteins and hence concentrates the minor high molecular weight proteins-and analyzed after gradient gel electrophoresis, additional glycoproteins of molecular weights 607, 700, 196, 900, 175, 100, 61, 800, 52, 200 and 42, 600 were resolved with this lectin. Radioiodinated soybean agglutinin, which has a specificity for N-acetyl-D-galactosamine and D-galactose, revealed seven bands, three of which were unique to this lectin (19, 600, 19, 100 and 17,000). Iodinated concanavalin A (d -mannose, d -glucose) revealed bands similar to the wheat germ agglutinin as well as additional bands of 40, 300, 37, 300, 35, 700, 21, 800 and 20, 400. The glycoprotein specificity for these lectin binding components was demonstrated by hapten carbohydrate binding inhibition and by organic solvent extraction for removal of glycolipids. Based on these experiments using three lectins with different carbohydrate specificity, 22 lectin-reactive components were identified; however, six of these bands were removed by chloroform-methanol extraction. The variations observed in the lectin binding capacity for these different bands suggest possible carbohydrate heterogeneity for these individual glycoproteins. Although many of these bands may be dissociated subunits (monomeric polypeptides) of oligomeric complexes, the observed multiplicity of these quantitatively minor glycoproteins associated with the purified myelin membrane implies a more intricate molecular organization for the myelin sheath complex than previously believed.  相似文献   

15.
Two lectins were purified by affinity chromatography from mature peanut (Arachis hypogaea L.) nodules, and compared with the previously characterised seed lectin of this plant. One of the nodule lectins was similar to the seed lectin in its molecular weight and amino-acid composition and ability to bind derivatives of galactose. However, unlike the seed lectin, this nodule lectin appeared to be a glycoprotein and the two lectins were only partially identical in their reaction with antibodies prepared against the seed lectin. The other nodule lectin also appeared to be a glycoprotein but bound mannose/glucose-like sugar derivatives, and differed from the seed lectin in molecular weight, antigenic properties and amino-acid composition.Abbreviations Gal galactose - Gle glucose - GNL galactose-binding nodule lectin - Fru fructose - MNL mannosebinding nodule lectin - M r rerative molecular mass - PBS phosphate-buffered saline - PSL peanut seed lectin - SDS sodium dodecyl sulphate - Sorb sorbitol  相似文献   

16.
Dam TK  Brewer CF 《Biochemistry》2008,47(33):8470-8476
Many biological ligands are composed of clustered binding epitopes. However, the effects of clustered epitopes on the affinity of ligand-receptor interactions in many cases are not well understood. Clustered carbohydrate epitopes are present in naturally occurring multivalent carbohydrates and glycoproteins, which are receptors on the surface of cells. Recent studies have provided evidence that the enhanced affinities of lectins, which are carbohydrate binding proteins, for multivalent carbohydrates and glycoproteins are due to internal diffusion of lectin molecules from epitope to epitope in these multivalent ligands before dissociation. Indeed, binding of lectins to mucins, which are large linear glycoproteins, appears to be similar to the internal diffusion mechanism(s) of protein ligands binding to DNA, which have been termed the "bind and slide" or "bind and hop" mechanisms. The observed increasing negative cooperativity and gradient of decreasing microaffinity constants of a lectin binding to multivalent carbohydrates and glycoproteins result in an initial fraction of lectin molecules that bind with very high affinity and dynamic motion. These findings have important implications for the mechanisms of binding of lectins to mucins, and for other ligand-biopolymer interactions and clustered ligand-receptor systems in general.  相似文献   

17.
ANOMALIES OF MYELIN-ASSOCIATED GLYCOPROTEINS IN''QUAKING MICE   总被引:6,自引:3,他引:3  
Abstract— Proteins and glycoproteins in a myelin fraction isolated from Quaking mutant mice were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and stained with Fast Green or with periodic acid-Schiff reagents. Double labelling experiments with [3H]fucose and [14C]fucose were also used to compare glycoproteins in myelin from the mutant mice with those from control mice. In the myelin fraction from the Quaking mice the basic proteins and proteolipid protein were decreased relative to the high molecular weight proteins. Some glycoproteins which are present in small amounts in myelin from normal mice were increased relative to the major glycoprotein in the myelin fraction of the Quaking mice. Furthermore, the major myelin-associated glycoprotein was shifted toward higher apparent molecular weight in comparison with controls of the same age or even with 9-day-old controls. The abnormal glycoproteins in the mutant myelin fraction could be a factor in the impairment of myelination.  相似文献   

18.
Lysates from herpes simplex virus type 1-infected cells were subjected to affinity chromatography on soybean and Helix pomatia lectins. One of the virus-specified glycoproteins, probably the herpes simplex virus type 1-specific gC glycoprotein, bound to the lectins and was eluted with N-acetylgalactosamine. The affinity chromatography permitted a high degree of purification of the type-specific glycoprotein with respect to both host cell components and other viral glycoproteins. The lectin affinity pattern of this glycoprotein indicates the presence of a terminal alpha-N-acetylgalactosamine in an oligosaccharide, a finding not reported previously for glycoproteins of enveloped viruses.  相似文献   

19.
Cammer  Wendy; Zhang  Hong 《Glycobiology》1993,3(6):627-631
To distinguish macroglia (oligodendrocytes and astrocytes) frommicroglia in the brain, ‘markers’ that have beenused in previous studies include carbonic anhydrase II (CAII)immunoreactivity for macroglia, and Ricinusand Bandeiraea(BS-I)lectins for microglia. However, in rats <1 week of age, manycells stained intensely with both anti-CAII and the labelledBS-I lectin. If some of the BS-I+/CAII+ cells were macroglia,and not microglia, BS-I should no longer be regarded as specificfor microglia. To confirm or rule out that possibility, lectinhistochemistry and double immunofluorescence staining were performedin tissue from the brains of normal young rats and from themicroglial cell-enriched brains of myelin-deficient mutant rats.BS-I+/ CAII+ cells were found and examined. The BS-I +/CAII-cellsresembled macrophages and microglia and did, indeed, differin sizes and shapes from the BS-I+/+cells. The BS-I+/CAII+ cellsappeared to represent CAII+ putative oligodendrocyte precursorsdescribed previously. Although less obvious, a lectin-bindingstructure was also observed in astrocytes. Lectins may cross-reactwith macroglial glycoproteins. For example, a glycoprotein foundin o ligodendrocytes and myelin, the myelin-associated glycoprotein(MAG), is related to the Ig superfamily and cell adhesion molecules.Therefore, it is cautioned that lectins and antibodies againstmembers of the latter families of proteins should be used ascell-type specific markers only if other parameters are alsoexamined. astrocytes carbonic anhydrase lectins microglia oligodendrocytes  相似文献   

20.
Recent studies indicate that some mammalian S-type lectins bind preferentially to oligosaccharides containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1]n or poly-N-acetyllactosamine (PL) sequence. We report here our investigation on the distribution of these sequences in glycoproteins in Chinese hamster ovary (CHO) cells and the interaction of glycoproteins containing PL chains with an immobilized S-type lectin (L14) from calf heart tissue. Our results demonstrate that PL chains are carried by a few high molecular weight glycoproteins which are bound by tomato-lectin Sepharose and one of these was precipitated by antibody to LAMP-1 (a lysosomal-associated membrane glycoprotein). More importantly, these high molecular weight glycoproteins, including LAMP-1, were bound with high affinity by L14. These results indicate that mammalian S-type lectins are highly specific in their interactions with glycoproteins and that LAMPs carry important recognition sequences for these lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号