首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The African White-backed Vulture Gyps africanus is widely distributed across sub-Saharan Africa but populations are in decline. Loss of suitable habitat for foraging and breeding are among the most important causes, and future conservation will require identification of suitable remaining habitat and the threats to it and to the vultures in it. Like many large raptors, African White-backed Vultures have a long breeding cycle and thus spend much of each year near their nest site, but ecological correlates of nest sites have not been quantified for any African vulture species. We use nest-site data for African White-backed Vultures collected during aerial and ground surveys and habitat data derived from a GIS to develop statistical models that estimate the probability of nest presence in relation to habitat characteristics, and test these models against an independent dataset. The models predicted that both direct and indirect disturbance by humans limit the potential distribution. Suitable habitat needs to be identified and receive adequate protection from poaching. Poaching of vultures is thought to be mainly for use in traditional medicine and does not target any particular species, so all vulture species can be considered equally at risk. We predict the likelihood of individuals nesting in currently unprotected areas should they become protected. These predictions show that readily available GIS data combined with relatively simple statistical modelling can provide meaningful large-scale predictions of habitat availability.  相似文献   

2.
Occupied and unoccupied sites of bearded vulture Gypaetus barbatus and Eurasian griffon Gyps fulvus were located in the Caucasus (mainly Georgia). Habitat variables related to nest-site characteristics, climate, terrain, human disturbance and food availability were used to construct predictive models of vulture breeding site selection by using a geographic information system (GIS), logistic regression and Bayesian statistical inference. The probability of bearded vulture occupancy of a cliff ledge that was safe from climatic adversity, human disturbance and predation was positively correlated with the following variables measured within a 20-km radius of the ledge: mean elevation, mean slope, the percentage of open areas, mean distance to roads, number of globally threatened wild goats Capra cylindricornis, C. caucasica and C. aegargus , and annual biomass of dead livestock. The probability of such a cliff ledge being occupied by Eurasian griffon was negatively correlated with annual rainfall at the ledge and positively correlated with the percentage of open areas and annual biomass of dead livestock within 20 km of the ledge. Provided that GIS coverage of the habitat variables is available, these models can be of help in various areas of the Caucasus and elsewhere to predict possible nest occurrence areas, and highlight sites where vultures may occur in the future if the population grows because of conservation or other activities.  相似文献   

3.
Predictive models on breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus; Aves: Accipitridae) have been performed at four different spatial scales in Castellón province, East of Iberian Peninsula. The scales considered were: (1) nest site scale (1×1 km2 Universal Transverse Mercator (UTM) square containing the nest); (2) near nest environment (3×3 km2 UTM square); (3) home range scale (5×5 km2 UTM square); and (4) landscape level scale (9×9 km2 UTM square containing the above mentioned ones). Topographic, disturbance, climatic and land use factors were measured on a geographic information system (GIS) at occupied and unoccupied UTM squares. Logistic regression was performed by means of a stepwise addition procedure. We tested whether inclusion of new subset of variables improved the models by increasing the area under the receiver operator characteristic plot. At nest site scale, only topographic factors were considered as the most parsimonious predictors. Probability of species occurrence increases with slope in craggy areas at lower altitudes. At the 3×3 km2 scale, climate and disturbance variables were included. At home range and landscape level scales, models included climate, disturbance, topographic and land use factors. Higher temperatures in January, template ones in July, higher rainfall in June, lower altitudes and higher slope in the sample unit increase probability of occurrence of Bonelli’s eagle at broadest scales. The species seems to prefer disperse forests, scrubland and agricultural areas. From our results, we consider that there is a hierarchical framework on habitat selection procedure. We suggest that it is necessary to analyse what key factors are affecting Bonelli’s eagle nest-site selection at every study area to take steps to ensure appropriate conservation measures. The combination of regression modelling and GIS will become a powerful tool for biodiversity and conservation studies, taking into account that application depends on sampling design and the model assumptions of the statistical methods employed. Finally, predictive models obtained could be used for the efficient monitoring of this scarce species, to predict range expansions or identify suitable locations for reintroductions, and also to design protected areas and to help on wildlife management.  相似文献   

4.
Habitat selection often involves choices made at different spatial scales, but the underlying mechanisms are still poorly understood, and studies that investigate the relative importance of individual scales are rare. We investigated the effect of three spatial scales (landscape, territory, nest-site) on the occurrence pattern of little crake Zapornia parva and water rail Rallus aquaticus at 74 ponds in the Masurian Lakeland, Poland. Habitat structure, food abundance and water chemical parameters were measured at nests and random points within landscape plots (from 300-m to 50-m radius), territory (14-m) and nest-site plots (3-m). Regression analyses suggested that the most relevant scale was territory level, followed by landscape, and finally by nest-site for both species. Variation partitioning confirmed this pattern for water rail, but also highlighted the importance of nest-site (the level explaining the highest share of unique variation) for little crake. The most important variables determining the occurrence of both species were water body fragmentation (landscape), vegetation density (territory) and water depth (at territory level for little crake, and at nest-site level for water rail). Finally, for both species multi-scale models including factors from different levels were more parsimonious than single-scale ones, i.e. habitat selection was likely a multi-scale process. The importance of particular spatial scales seemed more related to life-history traits than to the extent of the scales considered. In the case of our study species, the territory level was highly important likely because both rallids have to obtain all the resources they need (nest site, food and mates) in relatively small areas, the multi-purpose territories they defend.  相似文献   

5.
The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context.  相似文献   

6.
Determination of factors affecting nest habitat selection is a major topic in avian ecology, with strong implications for conservation purposes especially for the species with unfavorable status. The turtle dove (Streptopelia turtur) is a vulnerable species that has undergone a rapid and serious decline across its distribution range. I investigated the effect of different variables at two spatial scales (10-m radius, nest site; and 100-m radius, landscape) on the probability of presence of turtle dove nests in an agroforestry system of Central Morocco. Topography, habitat structure, human disturbance, and land use parameters were measured at nests (n?=?70) and random points (n?=?70) at both scales. Generalized linear model analyses showed that, at the nest site scale, tree height best explained occurrence of turtle dove nests (with nest occurring preferentially in smaller trees). At the landscape scale, nest occurrence probability decreased with elevation and distance to the nearest forest edge, and increased with forest cover and distance to the nearest habitation. Comparison of explanatory power of the single-scale models showed that the most relevant scale was the nest site level, followed by landscape scales, but the model including both nest-scale and landscape-scale variables was best. The variation partitioning analysis confirmed this pattern. In study area, the turtle dove nest habitat selection process occurs within a relatively small scale, but the joint effect of variables at the two scales is relevant. From a practical perspective, it would be interesting to reproduce the same experimental approach on other Mediterranean breeding habitats (agricultural and other forest habitats) to find out if this species would adopt the same nest habitat selection pattern.  相似文献   

7.
Declines in the spatial extent of the sagebrush ecosystem have prompted the consideration of conservation efforts that view the greater sage-grouse (Centrocercus urophasianus; sage-grouse) as an umbrella species at landscape scales. Conservation strategies that focus on an umbrella species, however, may have unintended negative consequences for co-occurring species at finer scales. In North America, grassland and shrubland songbird populations are declining faster than other avian groups. Conservation of sage-grouse habitats may protect songbird habitats where distributions overlap. To assess the umbrella species concept at fine scales, we quantified nest-site selection for a sagebrush-obligate songbird, the Brewer's sparrow (Spizella breweri). We then compared the fine-scale habitat variables that influenced Brewer's sparrow nest-site selection with fine-scale nest-site selection for sage-grouse in the Powder River Basin region of northeastern Wyoming, USA. We modeled nest-site selection using conditional logistic regression for Brewer's sparrow (2016–2017) and logistic regression for sage-grouse (2004–2007). Both species selected nest sites with higher visual obstruction, shrub height, and branching density, although the selection for higher shrub height was stronger for sage-grouse. Brewer's sparrows selected nest shrubs with higher percentage of living foliage (vigor), and the opposite was shown for sage-grouse. At the nest site, based on the variables we measured, our results suggest that Brewer's sparrows and sage-grouse select for similar habitat attributes, with the exception of shrub vigor of the nest shrub. The stronger selection for more vigorous shrubs in Brewer's sparrows may be because they nest in shrubs, rather than on the ground under shrubs (as in sage-grouse). Most of the conservation objectives for protection of sage-grouse habitats appear to be beneficial or inconsequential for Brewer's sparrow. Local habitat management for sage-grouse as a proxy for conservation of other species may be justified if the microhabitat preferences of the species under the umbrella are understood to avoid unintentional negative effects. © 2019 The Wildlife Society.  相似文献   

8.
Species conservation requires an understanding of the factors and interactions affecting species distribution and behavior, habitat availability and use, and corresponding vital rates at multiple temporal and spatial scales. Opportunities to investigate these relationships across broad geographic regions are rare. We combined long-term waterfowl population surveys, and studies of habitat use and breeding success, to develop models that identify and incorporate these interactions for upland-nesting waterfowl in the Prairie Pothole Region (PPR) of Canada. Specifically, we used data from the annual Waterfowl Breeding Population and Habitat Survey (1961–2009) at the survey segment level and associated habitat covariates to model and map the long-term average duck density across the Canadian PPR. We analyzed nest location and fate data from approximately 25,000 duck nests found during 3 multi-year nesting studies (1994–2011) to model factors associated with nest survival and habitat selection through the nesting season for the 5 most common upland nesting duck species: mallard (Anas platyrhynchos), gadwall (Mareca strepera), blue-winged teal (Spatula discors), northern shoveler (Spatula clypeata), and northern pintail (Anas acuta). Duck density was highly variable across the Canadian PPR, reflecting positive responses to local wetland area and count, and amounts of cropland and grassland, a regional positive response to latitude, and a negative response to local amounts of tree cover. Nest survival was affected by temporal and spatial variables at multiple scales. Specifically, nest survival demonstrated interactive effects among species, nest initiation date, and nesting cover type and was influenced by relative annual wetness, population density, and surrounding landscape composition at landscape scales, and broad geographic gradients (east-west and north-south). Likewise, species-specific probability of nest habitat selection was influenced by timing of nest initiation, population density, relative annual wetness, herbaceous cover, and tree cover in the surrounding landscape, and location within the Canadian PPR. We combined these models, with estimates of breeding effort (nesting, renesting, and nest attempts) from existing literature, in a stochastic conservation planning model that estimates nest distribution and success given spatiotemporal variation in duck density, habitat availability, and influential covariates. We demonstrate the use of this model by examining various conservation planning scenarios. These models allow estimation of local, landscape, and regional influence of conservation investments and other landscape changes on the productivity of breeding duck populations across the PPR of Canada. These models lay the groundwork for the incorporation of conservation delivery costs for full return-on-investment analyses and scenario analyses of climate, habitat, and land use change in regional and continental population models.  相似文献   

9.
C. J. Skead 《Ostrich》2013,84(2):155-165
Hooded Vultures Necrosyrtes monachus are critically endangered but little is known of their year-round use of nests or whether other species usurp Hooded Vulture nest sites. We investigated visitation rates by Hooded Vultures and other species (including potential nest predators and usurpers) to examine their effect on Hooded Vulture breeding success. We present observations of 33 species recorded by camera traps at 12 Hooded Vulture nests over a total of 93 nest-months (2 095 nest-days). Several pairs of Hooded Vultures visited their nests regularly during the non-breeding season, some adding nesting material, highlighting that pairs visited their nest(s) year round. Egyptian Geese Alopochen aegyptiaca, potential usurpers of raptor nests, were present at occupied and unoccupied Hooded Vulture nests, but we recorded no usurpation of nests by Egyptian Geese and they had no impact on vulture breeding success. Hooded Vulture breeding failure was linked to two species only: camera-trap imagery recorded one case of predation of a vulture egg by a Chacma Baboon Papio ursinus, and one case of a Martial Eagle Polemaetus bellicosus predating a vulture nestling. We recommend expanding the Hooded Vulture nest monitoring programme to include more pairs.  相似文献   

10.
Quantitative studies on nesting habitat selection are important to understand and predict the resource requirements for breeding habitat. In this study, we analysed nest-site (cliff) and territory selection patterns of the Bearded Vulture in the Annapurna Range of the Himalayas (Nepal). Our study area represents high-elevation mountain range systems, where information on nest selection is lacking, despite having the largest remaining populations of Bearded Vultures in the world. Our models indicated selection patterns at both nest and territory spatial scales that are consistent with previous studies at lower altitudes (Pyrenees, the Caucasus), such as a preference for landscape patches with greater food availability. However, our models also indicated selection patterns that are probably a response to the higher altitudes and sheer reliefs of the Annapurna massif, such as avoidance of the steepest slopes and selection of cliffs facing south and west for nest-sites. We did not detect an impact of human activities on the distribution of nests or territories. However, the Annapurna massif is experiencing development of infrastructures (e.g. road construction). Further research efforts will be needed to monitor human impacts on Bearded Vulture populations in the Annapurna Range, as this is a global stronghold for this species.  相似文献   

11.
Nest-site selection by species is expected to be adaptive and lead to improved breeding productivity, but in some settings, there exist mismatches between preferred nesting habitat and breeding productivity. We tested the expectation that nest-site selection is adaptive in a sample of 63 nests of a long-lived social species that breeds and forages in groups: the critically endangered white-backed vulture (Gyps africanus). By studying breeding groups in the same area, we controlled for landscape-level effects on habitat selection and investigated how fine-scale nest-site characteristics affect breeding productivity. We developed models to assess how nine characteristics of nest sites selected by breeding vultures compared with 70 random trees and tested associations between these characteristics and breeding productivity. White-backed vultures selected nest sites in taller trees (>7 m), but neither tree height nor any other nest-site characteristics had a clear effect on breeding productivity. Vultures selected nest trees closer to each other than random trees, and the associations between nest density, nearest neighbour distance and breeding success were all positive. These positive associations and the absence of an observable effect between nest-site characteristics and breeding productivity suggest that for this semi-colonial breeder, the social imperative of proximity to conspecifics (i.e., nesting near other vultures and group foraging) may be more important than individual nest-site selection.  相似文献   

12.
Nest predation is the leading cause of reproductive failure for grassland birds of conservation concern. Understanding variation in nest predation rates is complicated by the diverse assemblage of species known to prey on nests. As part of a long‐term study of grassland bird ecology, we monitored populations of predators known to prey on grassland bird nests. We used information theoretic approach to examine the predator community's association with habitat at multiple scales, including local vegetation structure of grassland patches, spatial attributes of grassland patches (size and shape), and landscape composition surrounding grassland patches (land cover within 400 and 1600 m). Our results confirmed that nest predators respond to habitat at multiple scales and different predator species respond to habitat in different ways. The most informative habitat models we selected included variability in local vegetation (CV in the density of forbs), local patch (area and edge‐to‐interior ratio), and landscape within a 1600 m buffer around grasslands (percent of land covered by human structures and development). As a separate question, we asked if models that incorporated information from multiple scales simultaneously might improve the ability to explain variation in the predator community. Multi‐ scale models were not consistently superior to models derived from variables focused at a single spatial scale. Our results suggest that minimizing human development on and surrounding conservation land and the management of the vegetation structure on grassland fragments both may benefit grassland birds by decreasing the risk of nest predation.  相似文献   

13.
Capsule There is a relationship between owl numbers and the availability of the agri-forest patchwork.

Aims To model habitat preferences at three different scales of two predators largely neglected within the framework of Environmental Impact Assessment (EIA) studies.

Methods We studied habitat preferences of Long-eared Owls and Little Owls by comparing habitat composition around 28 and 78 occupied territories respectively with 55 non-occupied territories in Alicante (eastern Spain). Generalized linear models were used to examine patterns of habitat preference at three different spatial scales: nest-site, home range and landscape.

Results At the nest-site scale, Long-eared Owls preferred wooded areas with few paved roads while Little Owls preferred arid plantations. Furthermore, the probability of finding an occupied territory increased with the proximity of another occupied territory in the surroundings. The home range scale models mirror the feeding requirements of the owls. Thus, Long-eared Owls occupied areas with high percentages of forest, arid plantations, edges between these two land uses, short distances between nests, with presence of conspecifics and little human disturbance. Little Owls occupied arid plantations with high availability of linear structures and the proximity of villages. At the landscape scale, Long-eared Owls eluded extensive forests, and Little Owls preferred arid plantations.

Conclusions We suggest a hierarchical process of habitat selection for both owls regarding fitting trophic resources at the broadest scales and adequate sites for breeding and roosting at the smallest scale. EIA studies must consider that protecting small areas around single nests may not be an efficient conservation option compared with preserving clusters of territories for both species.  相似文献   

14.
Factors affecting nest predation on forest songbirds in North America   总被引:2,自引:1,他引:1  
FRANK R. THOMPSON  III 《Ibis》2007,149(S2):98-109
Nest predation is an important factor in the ecology of passerines and can be a large source of mortality for birds. I provide an overview of factors affecting nest predation of passerines in North America with the goal that it may provide some insight into the ecology and management of woodland birds in the United Kingdom. Although several factors influence productivity, nest success is perhaps the most widely measured demographic characteristic of open-cup-nesting birds, and nest predation is usually the largest cause of nest failure. The identity of predator species, and how their importance varies with habitat and landscape factors, must be known for managers and scientists to design effective conservation plans and place research on nest predation in the appropriate context. Recent studies using video surveillance have made significant contributions to our understanding of the relative importance of different predator taxa in North America. Spatial and temporal variation in nest predation can be better understood when landscapes are placed in a biogeographical context and local habitat and nest-site effects are placed in a landscape context. Low productivity resulting from high nest predation is one of several potential causes of bird population declines in North America and the UK. Although the 'forest fragmentation paradigm' from the eastern US may not apply directly to the UK, thinking about avian demographics from a multiscale perspective, and consideration of factors affecting nest predation with knowledge of the dominant predator species, may provide insight into population declines.  相似文献   

15.
Species distributions are influenced by both climate conditions and landscape structure. Here we propose an integrated analysis of climatic and landscape niche-based models for a forest-dependent primate, the endangered black lion tamarin (Leontopithecus chrysopygus). We applied both climate and landscape variables to predict the distribution of this tamarin and used this information to prioritize strategic areas more accurately. We anticipated that this approach would be beneficial for the selection of pertinent conservation strategies for this flagship species. First, we built climate and landscape niche-based models separately, combining seven algorithms, to infer processes acting on the species distribution at different scales. Subsequently, we combined climate and landscape models using the EcoLand Analysis. Our results suggest that historic and current landscape fragmentation and modification had profoundly adverse effects on the distribution of the black lion tamarins. The models indicated just 2096 km2 (out of an original distribution of 92,239 km2) of suitable areas for both climate and landscape. Of this suitable area, the species is currently present in less than 40%, which represents less than 1% of its original distribution. Based on the combined map, we determined the western and southeast regions of the species range to be priority areas for its conservation. We identified areas with high climatic and high landscape suitability, which overlap with the remaining forest fragments in both regions, for habitat conservation and population management. We suggest that areas with high climatic but low landscape suitability should be prioritized for habitat management and restoration. Areas with high landscape suitability and low climatic suitability, such as the Paranapiacaba mountain range should be considered in light of projected climate change scenarios. Our case study illustrates that a combined approach of climatic and landscape niche-based modeling can be useful for establishing focused conservation measures that may increase the likelihood of success.  相似文献   

16.
We investigated potential effects of nest site and landscape scale factors, including anthropogenic disturbance and habitat patchiness, on the nesting success of a reintroduced population of northern aplomado falcons (Falco femoralis septentrionalis) in southern Texas. We monitored 62 nesting attempts during 2002–2004 in the Lower Rio Grande Valley. We developed hierarchical models describing daily nest survival rates (DSR) and compared the models using a Bayesian approach in R and WinBUGS. We considered possible effects of nest age, temporal trends, nest site variables, landscape structure, territory (a random effect), and 3 measures of anthropogenic disturbance: distance to paved road, proximity to power pole, and nocturnal light intensity. Whether evaluated by Deviance Information Criterion (DIC) scores or the models' overall posterior probabilities as estimated with a reversible jump Markov Chain Monte Carlo algorithm, none of our landscape or disturbance measures affected DSR. Rather, variation in DSR was best described by nest height, overhead cover, and nest source (artificial or natural). These nest site level factors may be manipulated by managers through provision of artificial nests. We recommend that artificial nests continue to be provided, as such nests are highly successful when located on moderately tall substrates, and they permit researchers to access nest contents for population monitoring. © 2011 The Wildlife Society.  相似文献   

17.
Management of hunting activity to serve as a tool for sustainable development has become a key issue in conservation biology. However, little evidence is available showing positive impacts of hunting on ecosystem conservation, limiting its capability to be used as a conservation tool. We analysed hunting and its positive influence on the ecology and conservation of the griffon vulture (Gyps fulvus), a scavenger with a relevant function in the ecosystem, in the Cantabrian Mountains, NW Spain. Use of the area by vultures was addressed by looking for cliffs used as roosts or colonies, and consumption of game species by vultures was evaluated through field surveys and questionnaires to hunters. Results revealed a strong spatiotemporal adjustment in the use of the area by vultures and hunting events, especially of red deer and wild boar. Vultures occupied roosting sites very close to the main hunting sectors of these game species and often were seen consuming their carcasses. The spatiotemporal pattern of roost use by vultures strongly overlapped with hunting of red deer. The numbers of both red deer and wild boar hunting episodes within 3.5 km around the roosts were the best predictors of vulture occurrence and number. Our estimates show that hunting could feed around 1,800 vultures/6 months. Hunting can thus influence species at the top of the ecosystem (scavengers) and could aid sustainable management of griffon vulture populations, reconciling hunting and conservation. However, negative and positive impacts should be taken into account simultaneously for an overall evaluation of hunting on ecosystem conservation.  相似文献   

18.
A comprehensive understanding of how human disturbance affects tropical forest ecosystems is critical for the mitigation of future losses in global biodiversity. Although many genetic studies of tropical forest fragmentation have been conducted to provide insight into this issue, relatively few have incorporated landscape data to explicitly test the effects of human disturbance on genetic differentiation among populations. In this study, we use a newly developed landscape genetic approach that relies on a genetic algorithm to simultaneously optimize resistance surfaces to investigate the effects of human disturbance in the Udzungwa Mountains of Tanzania, which is an important part of a universally recognized biodiversity hotspot. Our study species is the endangered Udzungwa red colobus monkey (Procolobus gordonorum), which is endemic to the Udzungwa Mountains and a known indicator species that thrives in large and well-protected blocks of old growth forest. Population genetic analyses identified significant population structure among Udzungwa red colobus inhabiting different forest blocks, and Bayesian cluster analyses identified hierarchical structure. Our new method for creating composite landscape resistance models found that the combination of fire density on the landscape and distance to the nearest village best explains the genetic structure observed. These results demonstrate the effects that human activities are having in an area of high global conservation priority and suggest that this ecosystem is in a precarious state. Our study also illustrates the ability of our novel landscape genetic method to detect the impacts of relatively recent landscape features on a long-lived species.  相似文献   

19.
Understanding factors that affect the persistence of charismatic megafauna in human‐dominated landscapes is crucial to inform conservation decision‐making and reduce human‐wildlife conflict. We assessed the effect of environmental and anthropogenic factors at different landscape and management scales in predicting the distribution of African elephant (Loxodonta africana) within the Greater Mapungubwe Transfrontier Conservation Area in Southern Africa. We combined aerial distribution counts over a 12‐yr period with 14 variables, representing food availability, landscape, and anthropogenic effects, into generalized linear models. Generalized linear models were run for the broader landscape, as well as three separate management units within the broader landscape, namely ecotourism, trophy hunting, and a combination of hunting and ecotourism. Human activities within different management units forced elephant to trade‐off between disturbance avoidance, and good food and water availability. In addition, the important predictors of elephant distribution within each of the management units differed from the predictors at the broader landscape. Overall, our results suggest that at the fine scale, elephant are constraint by factors that may be masked at the broader landscape scale. We suggest that accounting for anthropogenic disturbance is important in determining the distribution of large, wide‐ranging, mammal species in increasingly human‐dominated landscapes, and that modeling needs to be done at the spatial scales at which conservation decisions are made.  相似文献   

20.
Species distribution models (SDMs) are increasingly used to predict species ranges and their shifts under future scenarios of global environmental change (GEC). SDMs are thus incorporating key drivers of GEC (e.g. climate, land use) to improve predictions of species’ habitat suitability (i.e. as an indicator of species occurrence). Yet, most SDMs incorporating land use only consider dominant land cover types, largely ignoring other key aspects of land use such as land management intensity and livestock. We developed SDMs including main land use components (i.e. land cover, livestock and its management intensity) to assess their relative importance in shaping habitat suitability for the Egyptian vulture, an endangered raptor linked to livestock presence. We modelled current and future (2020 and 2050) habitat suitability for this vulture using an organism-centred approach. This allowed us to account for basic species’ habitat needs (i.e. nesting cliff) while gaining insight into our variables of interest (i.e. livestock and land cover). Once nest-site requirements were fulfilled, land use variables (i.e. openland and sheep and goat density) were the main factors determining species’ habitat suitability. Current suitable area could decrease by up to 6.81% by 2050 under scenarios with rapid economic growth but no focus on environmental conservation and rural development. Local solutions to environmental sustainability and rural development could double current habitat suitability by 2050. Land use is expected to play a key role in determining Egyptian vulture's distribution through land cover change but also through changes in livestock management (i.e. species and stocking density). Change in stocking densities (sheep and goats/km2) becomes thus an indicator of habitat suitability for this vulture in our study area. Abandonment of agro-pastoral practises (i.e. below ∼15–20 sheep and goats/km2) will negatively influence the species distribution. Nonetheless, livestock densities above these values will not further increase habitat suitability. Given the widespread impacts of livestock on ecosystems, the role of livestock and its management intensity in SDMs for other (non-livestock-related) species should be further explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号