首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
1. Several hypotheses have been proposed to explain the structure of multi-species assemblages. Among these, abiotic environmental factors and biotic processes are often favoured. Several recent studies examining anuran communities identified environmental factors to be only of minor importance in the composition of leaf-litter and canopy assemblages in pristine forests. Instead, spatial effects and spatially structured environments were considered more important. 2. In this study, we investigated whether these findings could also be confirmed for very heterogeneous stream habitats in the primary rainforest of the Ulu Temburong National Park, Brunei Darussalam. We thus investigated anuran assemblage compositions on 50 stream sites with regard to environmental and spatial influences. 3. Cross-product correlations indicated that both factors (spatial and environmental parameters) determined assemblage composition of anurans. Environment itself may be spatially structured, yet this interrelation did not contribute to the explainable variation of frog community compositions within the study area. 4. Detailed analyses of the environmental parameters with nonmetric multidimensional scaling revealed that community structure was mostly affected by three major environmental characters: stream turbidity, river size and the density of understorey vegetation. Based on these habitat characteristics, we assigned species to three distinct habitat guilds. 5. The results underline the importance of riparian habitat heterogeneity in pristine forests in structuring anuran assemblages. We conclude that different anuran assemblages, that is, leaf litter, canopy and stream communities, follow different assemblage rules and thus are not directly comparable.  相似文献   

2.
Abstract The relationship between the distribution of predators (fish, odonates and water beetles) and prey assemblages (amphibian larvae) was investigated in the tropical rainforest of central Amazonas, Brasil. The anuran community uses a variety of waterbodies for reproduction, ranging from streams and streamside ponds to isolated forest ponds. Predators in this system include fish in streams and streamside ponds, and invertebrates (primarily odonate naiads and beetles) in forest ponds. Tadpole species richness and assemblage structure were related to fish density and species richness. No relationships between tadpole assemblages and abiotic pond characteristics were detected. The presence offish explained much of the variation in both species composition and species richness within and among ponds. Some species of tadpole were consistently found to coexist with high densities of fish. Path analyses suggest that while fish have a strong direct effect on tadpole associations and species richness, they also have an indirect effect through invertebrate predators (odonate larvae and coleopteran beetles). Prey survival-strategies such as palatability and behaviour may explain how tadpole species composition is affected by predators at the community level. These findings suggest that the observed patterns of habitat use by larval anurans may be structured in response to the distribution of key predators (fish) in this system.  相似文献   

3.
4.
Land‐use intensification has consequences for biodiversity and ecosystem functioning, with various taxonomic groups differing widely in their sensitivity. As land‐use intensification alters habitat structure and resource availability, both factors may contribute to explaining differences in animal species diversity. Within the local animal assemblages the flying vertebrates, bats and birds, provide important and partly complementary ecosystem functions. We tested how bats and birds respond to land‐use intensification and compared abundance, species richness, and community composition across a land‐use gradient including forest, traditional agroforests (home garden), coffee plantations and grasslands on Mount Kilimanjaro, Tanzania. Furthermore, we asked how sensitive different habitat and feeding guilds of bats and birds react to land‐use intensification and the associated alterations in vegetation structure and food resource availability. In contrast to our expectations, land‐use intensification had no negative effect on species richness and abundance of all birds and bats. However, some habitat and feeding guilds, in particular forest specialist and frugivorous birds, were highly sensitive to land‐use intensification. Although the habitat guilds of both, birds and bats, depended on a certain degree of vegetation structure, total bat and bird abundance was mediated primarily by the availability of the respective food resources. Even though the highly structured southern slopes of Mount Kilimanjaro are able to maintain diverse bat and bird assemblages, the sensitivity of avian forest specialists against land‐use intensification and the dependence of the bat and bird habitat guilds on a certain vegetation structure demonstrate that conservation plans should place special emphasis on these guilds.  相似文献   

5.
The distribution patterns of animal species at local scales have been explained by direct influences of vegetation structure, topography, food distribution, and availability. However, these variables can also interact and operate indirectly on the distribution of species. Here, we examined the direct and indirect effects of food availability (fruits and insects), vegetation clutter, and elevation in structuring phyllostomid bat assemblages in a continuous terra firme forest in Central Amazonia. Bats were captured in 49 plots over 25‐km² of continuous forest. We captured 1138 bats belonging to 52 species with 7056 net*hours of effort. Terrain elevation was the strongest predictor of species and guild compositions, and of bat abundance. However, changes in elevation were associated with changes in vegetation clutter, and availability of fruits and insects consumed by bats, which are likely to have had direct effects on bat assemblages. Frugivorous bat composition was more influenced by availability of food‐providing plants, while gleaning‐animalivore composition was more influenced by the structural complexity of the vegetation. Although probably not causal, terrain elevation may be a reliable predictor of bat‐assemblage structure at local scales in other regions. In situations where it is not possible to collect local variables, terrain elevation can substitute other variables, such as vegetation structure, and availability of fruits and insects.  相似文献   

6.
Red panda Ailurus fulgens, an endangered habitat specialist, inhabits a narrow distribution range in bamboo abundance forests along mountain slopes in the Himalaya and Hengduan Mountains. However, their habitat use may be different in places with different longitudinal environmental gradients, climatic regimes, and microclimate. This study aimed to determine the habitat variables affecting red panda distribution across different longitudinal gradients through a multivariate analysis. We studied habitat selection patterns along the longitudinal gradient in Nepal's Himalaya which is grouped into the eastern, central, and western complexes. We collected data on red panda presence and habitat variables (e.g., tree richness, canopy cover, bamboo abundance, water availability, tree diameter, tree height) by surveys along transects throughout the species’ potential range. We used a multimodal inference approach with a generalized linear model to test the relative importance of environmental variables. Although the study showed that bamboo abundance had a major influence, habitat selection was different across longitudinal zones. Both canopy cover and species richness were unimportant in eastern Nepal, but their influence increased progressively toward the west. Conversely, tree height showed a decreasing influence on habitat selection from Eastern to Western Nepal. Red panda's habitat selection revealed in this study corresponds to the uneven distribution of vegetation assemblages and the dry climatic gradient along the eastern‐western Himalayas which could be related to a need to conserve energy and thermoregulate. This study has further highlighted the need of importance of bamboo conservation and site‐specific conservation planning to ensure long‐term red panda conservation.  相似文献   

7.
Studies on assemblages of freshwater fishes along elevational gradients of rivers are lacking, even in Europe. In this paper we have explored the entire range of elevational gradients existing in the European part of Russia. We analyzed how fish biodiversity (species richness, abundance, diversity indices) at 435 river sites differed by elevation. The impact of elevation on the distribution of freshwater fish species was analyzed using regression and ordination methods. For the first time for a large area of Eastern Europe, optimum points and niche breadth for fish species along altitude gradients were estimated. Our analyses showed: (1) species richness and Shannon index decreased in the upper part of the gradient; fish abundance showed a unimodal response to elevation; highest numbers were found at elevations between 250 and 500 m; (2) ordination analysis demonstrated an upstream-downstream gradient of the fish assemblages; (3) regression analysis showed significant preferences for elevation by 19 species, all of which were monotonic; (4) optimum and niche breadth (tolerance) were highly variable between species; only five species (brown trout, grayling, common minnow, bullhead and stone loach) were encountered at elevations above 650 m; and (5) in our region, the habitat of grayling was higher in the mountains, and its abundance (numbers) at extreme elevations was greater, than brown trout. These results show how fish assemblages differ with elevation. Our findings identify the data that can be used for regional environmental monitoring of the state of small rivers and for aquatic conservation.  相似文献   

8.
We investigated habitat variables influencing the species richness and composition of anuran tadpole assemblages in ponds from riparian areas of the Middle Paraná River. Tadpoles were collected at seven ponds that differed in hydroperiod and 10 habitat variables (water temperature, pH, conductivity, dissolved oxygen, turbidity, depth, size, time of isolation, macrophyte richness, and level of natural or anthropic disturbances) during a 5 year period. The presence/absence of potential tadpole predators was also recorded. Although we did not examine tadpole diets, we categorized anurans into ecomorphological guilds. We found that dissolved oxygen, maximum depth, pond size, macrophyte richness, and disturbances were significantly related to tadpole species richness. We also found that the richness of potential tadpole predator increased with longer pond hydroperiod. Thus, the number of tadpole species was higher in temporary and semi-permanent ponds without potential tadpole predators. The results of our study provide the first quantitative data on the tadpole assemblages in ponds associated with riparian areas of the Middle Paraná River Floodplain based on multi-year intensive sampling, a finding of both ecological interest and practical significance for future conservation management of anurans of Paraná River ecosystems.  相似文献   

9.
The structure of summer fish assemblages was examined along longitudinal gradients in 31 Mediterranean-type rivers of the middle Guadiana basin (south-west Iberian Peninsula), using data from 157 sites including small streams to deep rivers. An ordination analysis, based on 16 variables, was applied to species presence, using principal component and canonical correspondence analysis. The results for the habitat data were compared with those for the biological data using a Mantel analysis, and the agreement was highly significant. Spatial structure was considered by partitioning the total variability among the environmental and geographical variables. The fish assemblages showed longitudinal zoning during the summer, with species distributed over gradients of habitat size (depth), water quality (current and physico-chemical variables), and cover (substratum and vegetation), according to their adult size and life history. The size of the habitat that remained available in summer had the greatest biological effect, being the most important factor explaining fish species distribution and assemblage structure during this stressing season. Strictly spatial variation was low, but there was still a high residual variation. Habitat associations and life-history strategies are discussed for native and exotic species.  相似文献   

10.
Studies that assess the importance of riparian habitats in maintaining diversity of herpetofaunal assemblages in tropical dry forests are limited. We examined changes in abundance, diversity and composition of anuran, lizard and snake assemblages along stream edge–upslope gradients in conserved and disturbed areas of tropical dry forest on the Pacific coast of México. We sampled 659 plots in six watersheds over 2 yr. Two forest conditions (conserved and human disturbed, with three watersheds as replicates) were evaluated in the dry and rainy season. Within each watershed, plots were randomly located at three different distance categories from either stream edge: 0–10 m (near‐stream environment), 30–40 m (mid‐slope environment), and 50–60 m (upslope environment). Herpetofauna was surveyed by time‐constrained searches with a sampling effort of 1980 person‐hours. Eighteen anuran, 18 lizard and 23 snake species were recorded. Overall, abundance and diversity of lizards and snakes decreased from near‐stream to upslope areas in both forest conditions and seasons; while that of anurans followed this trend only for the conserved forest during the rainy season. Regardless of distance, abundance and diversity of anurans markedly decreased during the dry season, while that of snakes and lizards increased. Overall, our study shows that the importance of riparian areas for herpetofaunal conservation in dry tropical forests varies with forest condition and season.  相似文献   

11.
Large lowland rivers with sufficient hydrological storage capacity are capable of supporting primary production, but the dynamics of the advecting phytoplankton is poorly understood. Our study aimed at exploring how longitudinal versus lateral connectivity, flow dynamics versus resource availability and continuous versus discontinuous environmental gradients shaped the species composition of phytoplankton. Samples were taken from February to October 2000 along the Hungarian Tisza River (HTR) and in its main tributaries. Longitudinal and seasonal patterns were related to resources (light and nutrients) availability and flow dynamics derived from a 1D hydrodynamic model. The HTR was autotrophic during the study period, but tributary input considerably exceeded net autochtonous production. The Szamos River was the major source of both phytoplankton and nutrients in the HTR. Chryso- and euglenophytes were flushed into the main river from floodplain oxbows during high discharge. Imported algae experienced discontinuity in environmental gradients when entering the main river. The merged impact areas of two dams (IAD) that separate the two large meandering patches of the HTR disrupted the longitudinal profiles of both physico-chemical variables and attributes of algal assemblages (biomass, species composition, richness, similarity between adjacent sampling sites). Hydraulic storage along the IAD selectively favoured the recruitment of cryptophytes that, however, could not compensate for the enhanced sedimentation of diatoms in terms of biomass. Although the meandering patches presented several small-scale differences in major environmental gradients, both patches supported the growth of planktonic diatoms. Changes in algal biomass were decoupled from nutrient availability. We conclude that various measures must be applied in various lowland rivers within the same catchment to control their trophic status as a component of the ‘good ecological status’ defined in the Water Framework Directive.  相似文献   

12.
Biogeographical history and current ecological interactions have usually been addressed separately to explain the spatial distribution of patterns of biodiversity. In this study, we evaluated the integrated effects of biogeographical and environmental factors in structuring the diurnal amphibian anuran assemblages of the upper Madeira River, southwestern Amazonia. We used a sampling design involving 98 standardized units, distributed across seven locations covering both banks of the river's course in the state of Rondônia, Brazil. We conducted searches for frogs in three campaigns between February 2010 and February 2011, aiming to: (1) evaluate the effect of the Madeira River as a biogeographic barrier at the species‐assemblage level, and (2) test the influence of seven environmental variables (vegetation structure, vegetation cover, soil nutrients, soil structure, slope, elevation, and distance from the river bank) on the spatial structure of the frog assemblages, separately on each riverbank. Thirteen species of diurnal frogs were recorded, six of which were restricted to one of the river margins. Multivariate analysis of variance indicated a significant effect of the river as a barrier. Multiple regression analyses suggested that the environmental variables structuring frog assemblages differ on either side of the river. We found that both historical elements (on a regional scale) and environmental factors (at a local scale) shaped the occurrence and distribution of frog species in the study area.  相似文献   

13.
14.
Triest  Ludwig  Lung’ayia  Henri  Ndiritu  George  Beyene  Abebe 《Hydrobiologia》2012,695(1):343-360
We investigated epilithic diatoms in rivers draining to the Nyanza Bay in Lake Victoria (Kenya) with the aim of determining environmental gradients in the assemblages and testing the usefulness of diatom metrics from temperate regions. Spatial and temporal variations of assemblages were studied in 12 sites of three rivers. Kibos, Nyando, and Kisat rivers contained 224 diatom taxa collected on seven sampling occasions over 4 years. Species richness showed a marginal decrease downstream and was the lowest at sites with high conductivity and ammonia–nitrogen levels. Two-Way Indicator Species Analysis and Canonical Correspondence Analysis revealed two major groups of river sites. Conductivity, alkalinity, turbidity, dissolved oxygen, and silicate were the most important variables influencing species distribution. Ecological diatom metrics of temperate regions and the Specific Pollution sensitivity Index showed good relationships with environmental variables. Both diatom assemblages and averaged indicator values were strong in predicting sites of ecological deterioration and in differentiating an upstream site of better quality (drinking water supply of Kisumu), thereby confirming epilithic diatoms as suitable water quality indicators in equatorial rivers. The use of metrics initially designed for temperate rivers, however, appears less valuable in good quality tropical rivers because potential indicators are not considered.  相似文献   

15.
Effective vegetation classification schemes identify the processes determining species assemblages and support the management of protected areas. They can also provide a framework for ecological research. In the tropics, elevation‐based classifications dominate over alternatives such as river catchments. Given the existence of floristic data for many localities, we ask how useful floristic data are for developing classification schemes in species‐rich tropical landscapes and whether floristic data provide support for classification by river catchment. We analyzed the distribution of vascular plant species within 141 plots across an elevation gradient of 130 to 3200 m asl within La Amistad National Park. We tested the hypothesis that river catchment, combined with elevation, explains much of the variation in species composition. We found that annual mean temperature, elevation, and river catchment variables best explained the variation within local species communities. However, only plots in high‐elevation oak forest and Páramo were distinct from those in low‐ and mid‐elevation zones. Beta diversity did not significantly differ in plots grouped by elevation zones, except for low‐elevation forest, although it did differ between river catchments. None of the analyses identified discrete vegetation assemblages within mid‐elevation (700–2600 m asl) plots. Our analysis supports the hypothesis that river catchment can be an alternative means for classifying tropical forest assemblages in conservation settings.  相似文献   

16.
Abstract. Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.  相似文献   

17.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

18.
Understanding the relationships among community structure, vegetation structure and availability of food resources are a key to unravelling the ecological processes that structure biological communities. In this study, we tested (i) whether the composition of small mammal communities changed across gradients in habitat quality in tropical forest fragments, and (ii) whether any observed change could be explained by the functional traits of species. We sampled 24 trapping grids in fragments of semi‐deciduous forest, in each of two 6‐month periods. We considered each trapping grid as a sampling unit, for which we collected three datasets: an environmental matrix (vegetation structure and food resource availability), the abundance of small mammal species (community structure) and a matrix of functional traits (ecological and morphological traits which express tolerance to habitat disturbance and trophic guild). We used an RLQ approach to evaluate the association between traits and environmental gradients. Forest‐specialist and scansorial–arboreal species were associated with more complex habitat that had greater litter and canopy cover and more fallen logs. In relation to trophic guilds, granivore (fruit seeds), insectivorous and omnivorous species were also associated with higher complexity habitat, while frugivores were associated with shrub cover and availability of fruits. We conclude that functional traits (habitat use, use of vertical strata and diet) provide valuable insights into the distribution of small mammals along gradients of habitat quality in tropical forest fragments. We highlight that communities studies in fragmented landscapes should investigate the different components of biodiversity not only in landscape‐scale but also in habitat scale. Abstract in Portuguese is available with online material.  相似文献   

19.
This study was designed to test the biome dependency hypothesis, which predicts that similar assemblages of macroinvertebrates occur along rivers both within and among drainage basins if the basins occupy the same biome. Benthic macroinvertebrates were collected from three drainage basins within each of three biomes in Canada, the eastern deciduous forests (EDF) of southwestern Ontario, the grasslands of south-central Alberta, and the montane coniferous forests (MCF) of southeastern British Columbia. A total of 225 benthic samples (3 biomes × 3 rivers/biome × 5 sites/river × 5 samples/site) was collected in spring using a cylinder sampler.The significant interaction effect between biome and a site's location along a river indicated that spatial patterns of variation in total density and taxonomic composition were not spatially consistent among sites along rivers or among biomes. Total macroinvertebrate densities were equivalent between the EDF and grassland sites. However, total density was substantially lower at the MCF sites than at sites in the other two biomes. The greatest differences in taxonomic composition occurred among biomes, although significant differences also occurred for all other sources of variation examined. Macroinvertebrate composition was more strongly associated with local, site-specific factors (riparian vegetation and land use) than with longitudinal gradients. Distinct site-specific taxonomic assemblages were evident in EDF, but not in the other two biomes where land use was more homogeneous.  相似文献   

20.
This work aimed to explore the response of ant species assemblage to contrasting types of forests in a semideciduous stationary rainforest, in the Parque Estadual do Rio Doce, South Eastern Brazil. We compared antropomorphic borders of this park and natural ecotones, such as lake margins continuous with forests, as well as preserved forests far from ecotones. We investigated whether ground-dwelling ant species richness, abundance and composition would change according to forest types and ecotones. We expected greater species richness in interior tall forest, compared with low forest or ecotone habitats. In addition, we tested the effect of climate seasonality on ant assemblages found in each studied vegetation type. Each forest type was surveyed based on a minimum transect sampling unit of 150 m long summing up 30 pit-falls per unit. Two sampling events, one in dry season (September of 2001) and another in the rainy season (January of 2002) were performed. For both seasons, tall forest presented greater total number of ant species, however lower mean ant species and abundance per trap than other forest types, thus corroborating the prediction that ecotones might present high alpha diversity. Mean species richness and abundance did not differ between interior low forest and lake edge, or between these habitats and reserve border. In general, species composition were not clearly defined by forest types. Results here found suggest that species loss or community dominance by generalist species, eventually due to deforestation, is probably a much greater problem than previously thought. However, to understand patterns of insect species diversity and distribution in tropical ecosystem should be taken in account much more comprehensive, spatially explicit sampling designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号