首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fires change the diversity and composition of insects in forest ecosystems. In the present study, we examined the change of butterfly communities after a fire including the increase of butterfly richness, grassland species, and generalist species, and more changed communities. Butterflies were surveyed for 5 years after the big Uljin fire in 2007. During each year, butterflies were counted monthly by the line transect method from April to October at two sites (burned vs. unburned, ~ 1.5 km routes). Specialist grassland species decreased in the year of the fire but generalist species did not increase significantly. Butterfly richness did not change but butterfly diversity decreased due to a sudden increase of a species, Polygonia c-aureum. The butterfly community in the year of the fire was different from those in later years, showing temporary change of community in the year of the fire. Species composition was significantly different between burned and unburned sites, but this phenomenon cannot be interpreted as an influence of fire due to highly variable species composition of local butterfly assemblages and the non-repetitive sampling site of the present study.  相似文献   

2.
Using a modified belt transect method, we investigated the butterfly communities in five different vertical vegetation belts of Changbai Mountain in China from 1992 to 2009; these belts were broadleaf deciduous forest, coniferous–deciduous mixed forest, coniferous forest, erman’s birch forest and alp tundra. We determined the number of species and abundance of butterflies in each belt and in the coniferous–deciduous mixed forest belt, we also compared these parameters among different months. Preston’s lognormal distribution was used to model the species abundance distributions and five indicators (Shannon–Wiener diversity index (H′), Pielou uniformity index (J), Simpson predominance centralization index (C), Margalef abundance index (E) and Jaccard similarity coefficients) were used to analyze the butterfly community diversity. We found four main results. (1) Across all five vertical vegetation belts, 9641 butterflies were collected, belonging to 7 families, 98 genera and 196 species. As altitude increased, the number of butterfly genera and species gradually reduced. There was a relationship between the distribution of dominant species and the total species between each belt and the distribution of vascular plants. (2) The species abundance distribution was successfully modeled as a Preston’s lognormal distribution; the best fit was obtained when α = 0.326, the determinant coefficient of the equation was 0.74798. The species abundance distribution indicates that Changbai Mountain provides a suitable environment for butterflies; there was high species richness and an even distribution of butterfly species. There were few very common and very rare species, with most species having an intermediate abundance. (3) As altitude increased, H′ and E gradually became smaller, while C showed the opposite pattern, and J did not significantly change. The similarity coefficients analysis demonstrated a clear difference among belts; the farther apart any two belts, the smaller the similarity coefficient, indicating less similarity in the butterfly communities. The similarity coefficient between the deciduous forest and the coniferous–deciduous mixed forest belt was the largest (0.651) while that between the deciduous forest and the alp tundra was the smallest (0.141). (4) Comparison of the butterfly species communities among different months in the coniferous–deciduous mixed forest found that H′ and E showed similar directional changes, while the opposite pattern was found with C; the changes in J did not necessarily reflect the actual change in diversity.  相似文献   

3.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

4.
As time and money is limited, explicit, cost-effective, quick, and appropriate methods are needed to assist conservation planners and managers for making quick decisions. Butterflies promise to be a good model for rapid assessment and habitat monitoring studies because they are widespread, conspicuous, and easily recognizable and they are effective indicators of forest health. We conducted a rapid assessment of butterflies at five disturbance gradient sites that varied in elevation from 900 m a.s.l. to 3500 m a.s.l. for 20 days during March–April 2010 and recorded 79 butterfly species and 1504 individuals in the Tons valley in Western Himalayas. We were able to sample approximately 77% (123 species) of the estimated species richness on continuing the sampling until July 2010. Species richness at the study site is estimated to be 159 (95% CI: 145–210) species. Diversity was highest in heterogeneous habitats and decreased towards homogeneous habitats. Unique species were highly restricted to lowest disturbed sites. Using Pearson's correlation analysis, the strongest vegetative predictors of butterfly richness were plant species richness, canopy cover, and herb and shrub density. Butterfly species richness and abundance were highly correlated with altitude, temperature, relative humidity, fire signs, and livestock abundance. We also found positive cross-taxon correlation among butterflies, moths, and beetles across sites, indicating that butterflies can be used as surrogate or indicator taxa for insect conservation. Short sampling periods providing comprehensive estimates of species richness were reliable for identifying habitats and sites with the most conservation value in the Tons valley landscape.  相似文献   

5.
Biodiversity conservation through restoring degraded habitats or creating new habitats is advocated in the UK Biodiversity Action Plan. Restored grasslands on capped landfill sites are semi-natural habitats that could potentially support a wide range of plant communities. However, it is unknown whether these re-created habitats represent a significant resource in terms of biodiversity conservation. The UK National Vegetation Classification (NVC) was used to study these communities on nine restored capped landfill sites together with paired reference sites in the East Midlands region of the UK during 2007. Plant species data were collected by random quadrats along two 100 m transects from each site. The effects of restoration were investigated by examining plant attributes and Ellenberg indicators on restored landfill sites in comparison to paired reference sites. A total of 170 plant species were found from both sets of sites. There were no significant differences for most of the plant attributes between restored landfill sites and reference sites, though reference sites had significantly higher mean frequencies of native plants, nationally decreasing species and perennial species. In total 26 broad NVC community types were identified of which more than 70% fell within mesotrophic grassland (MG). The diversity of NVC communities confirms that underlying environmental factors such as soil fertility are important, dictating the type of plant communities that exist. It is recommended that management of these capped landfill sites should be targeted towards specific NVC community types to meet conservation targets.  相似文献   

6.
Individual plant species distribute according to their own spatial pattern in a community. In this study, we proposed an index for measuring the spatial heterogeneity in mass (dry weight) of individual plant species. First, we showed that the frequency distributions for mass of individual plant species per quadrat in a plant community are expressed using the gamma distribution with two parameters of λ (mean) and p. The parameter p is a measure indicating the level of spatial heterogeneity of plant mass as follows: (1) when p = 1, the plant mass per quadrat has a random pattern; (2) when p > 1, the plant mass has a spatial pattern with a lower heterogeneity than would be expected in the random pattern; and (3) when p < 1, the plant mass has a spatial pattern with a higher heterogeneity than would be expected in the random pattern. The p value for a given species can easily be calculated by the following equation if we use the moment method: (mean plant mass among quadrats)2 / (variance of plant mass among quadrats). The scatter diagram of (λ, p) for individual plant species, exhibits the spatial characteristics of each species in the community. We illustrated two examples of the (λ, p) diagram from data for individual species composing actual communities in a semi-natural grassland and a weedy grassland. Frequency distributions for the plant mass of individual species per quadrat followed the gamma distribution, and indi vidual species exhibited an inherent level of spatial heterogeneity.  相似文献   

7.
Small mammals can influence grassland assembly by selecting against palatable plants – the community can become dominated by the plants they avoid. This predation-based selection could have indirect effects on community biomass and tissue quality, especially given how untasty plants may have higher concentrations of recalcitrant carbon compounds including lignin. We tested small mammal effects on biomass and tissue quality of roots and shoots in a two-year-old 18 ha restored tallgrass prairie with established zones of high and low plant predation. We focused on the three dominant herbaceous functional groups of tallgrass prairie (perennial forbs, C3 and C4 grasses), and targeted the early stages of assembly given that plant predation by small animals can unfold quickly and is difficult to subsequently quantify. We predicted rodent predation to create communities with reduced biomass but an increased abundance of lignin-rich plants; we only observed the former. Rodents reduced aboveground biomass by 46% but preferentially targeted lignin-rich plants, with the latter result explained by the predominance of granivory over herbivory – there was no opportunity for selection based on tissue palatability. Based strictly on aboveground biomass, we estimated small mammals reduced standing stocks of recalcitrant carbon by 65 kg ha−1, with reductions in belowground stocks almost certainly higher given that root:shoot ratios averaged 21:1. Given that the quantity and quality of plant production can affect ecosystem functions including decomposition and the regulation of soil carbon stocks, our work suggests that non-random plant predation may substantially affect rates of soil carbon accumulation in the early stages of grassland development.  相似文献   

8.
Most biodiversity experiments have been conducted in grassland ecosystems with nitrogen limitation, while little research has been conducted on relationships between plant biomass production, substrate nitrogen retention and plant diversity in wetlands with continuous nitrogen supply. We conducted a plant diversity experiment in a subsurface vertical flow constructed wetland for treating domestic wastewater in southeastern China. Plant aboveground biomass production ranged from 20 to 3121 g m?2 yr?1 across all plant communities. In general, plant biomass production was positively correlated with species richness (P = 0.001) and functional group richness (P = 0.001). Substrate nitrate concentration increased significantly with increasing plant species richness (P = 0.046), but not with functional group richness (P = 0.550). Furthermore, legumes did not affect biomass production (P = 0.255), retention of substrate nitrate (P = 0.280) and ammonium (P = 0.269). Compared to the most productive of the corresponding monocultures, transgressive overyielding of mixed plant communities did not occur in most polycultures. Because greater diversity of plant community led to higher biomass production and substrate nitrogen retention, thus we recommend that plant biodiversity should be incorporated in constructed wetlands to improve wastewater treatment efficiency.  相似文献   

9.
Calcareous grasslands have long been recognized as biodiversity hotspots in Europe. However, in recent decades these ecosystems have seen rapid decline. In Belgium, more than 100 ha of calcareous grasslands have been restored from oak coppices and pine forests since the 1990s. The aim of the present study was to provide a quantitative assessment of the success of these restoration efforts, using two sets of indicators: one related to soil conditions, the other related to vascular plant communities. Soil conditions were evaluated by comparing soil samples from pre-restoration forest stands, restored grasslands (3-age classes: 2–4 years; 5–8 years, and 10–15 years) and reference grasslands. The analysis revealed no significant differences in soil N, P, and K contents between pre-restoration forests and restored and reference grasslands. We observed a decrease in the mineralization rate indicators in both pre-restoration forests and recent grassland restorations, which was resorbed in older restorations. Floristic surveys revealed that plant species composition of older restorations was most like reference grasslands. However, some differences in species composition persisted after 15 years. Moreover, a few rare species did not colonize restored grasslands despite a close seed source. Non-recolonization by a set of species expected on calcareous grasslands may be due to dispersal limitation and higher cover by native invasive grasses in restored parcels. These results were discussed in term of implications for management.  相似文献   

10.
Grassland desertification seriously threatens economic and social sustainable development. How to control grassland desertification, and even to restore and reconstruct grassland has been paid much attention. Vegetation restoration is considered to be a very effective solution. Soil contains an immense diversity of microbes, and the characteristics of soil microbial communities are sensitive indicators of soil. It is important to understand the relationship between vegetation and soil microbial diversity during the restoration process. Based on Biolog-Eco technology, a case study was carried out to investigate the effects of five different vegetation restoration patterns on soil microbial functional diversity after four years in sandy land in Hulunbeier, China. The five vegetation restoration patterns included mono-cultivar planting of Agropyron cristatum (UA), mono-cultivar planting of Hedysarum fruticosum (UH), mono-cultivar planting of Caragana korshinskii (UC), and mixed-cultivar planting of A. cristatum and H. fruticosum (AC), mixed-cultivar planting of A. cristatum, H. fruticosum, C. korshinskii and Elymus nutans (ACHE). Completely degraded sandy land was used as control.The results indicated that the vegetation restoration significantly increased soil microbial activity. The Average Well Color Development (AWCD), which represents soil microbial metabolic activity, followed the order of UC > UH > UA > ACHE > AC > control. AWCD of five vegetation restoration patterns were all higher than that of control, and the highest soil microbial metabolic activity in mono-cultivar planting of C. korshinskii treatment was found. Five vegetation restoration patterns resulted in significant increase in Shannon index (H), evenness (E) and Simpson’s Dominance (D) of soil microbial community. Greater Shannon index and Simpson’s Dominance was observed in UC treatment than in other four vegetation restoration treatments and control. ACHE treatment had the highest evenness index (E) of soil microbial community. The principal component analysis (PCA) indicated a similar mode in carbon utilization for soil microbial community of UA, AC, ACHE and CK. However, UH and UC treatments had special carbon utilization mode. Treatments of UA, AC, ACHE and CK concentrated in the negative direction of the first principal component. Conversely, treatments of UH and UC concentrated in the positive direction of the first and second principal component respectively. The carbon sources mostly used by soil microbes were carbohydrates, amino acids, metabolic mediates and secondary metabolites. Therefore, vegetation restoration enhanced the metabolic activity and functional diversity of microbial community in sandy soil.  相似文献   

11.
Surveys on tropical invertebrates must gather as much information as possible over the shortest period, mainly because of financial limitations and hyperdiversity. Fruit-feeding butterflies in the subfamilies Biblidinae, Charaxinae, Nymphalinae and Satyrinae (Nymphalidae) are attracted to decaying material and can be sampled with standardized methodologies, but (1) some groups can be difficult to collect, despite being quite common in Amazonian forest understorey; moreover, (2) the duration of the sampling period is not consistent among studies and (3) the sufficient effort for financially limited projects remains unknown. With this study, we aimed to fulfill points 1–3 in order to recommend a less costly protocol for monitoring purposes in the Amazon. In 25 km2 of rainforest in the state of Amazonas, Brazil, we evaluated the performance of sampling schemes for these butterflies (four, three, two and one visit in 250 m-long plots), using both nets and bait traps, while considering reductions in sampling effort and the removal of rare and infrequent taxa to optimize field and laboratory work. Reduced-effort schemes are only validated if they reflect both taxonomic and ecological information provided by the maximum effort. Procrustes superimposition was used to estimate the dissimilarity in the spatial distribution of species between schemes. Spatial turnover in herb, liana, palm tree and diameter-at-breast-height > 10 cm tree species composition was used as predictor for the butterfly community through linear regressions. The three-visit scheme was sufficient to retrieve high species similarity and the ecological patterns observed with maximum effort. The two-visit scheme lost a significant amount of information on species composition similarity, but recovered stronger environmental relationships than those observed with the four-visit scheme. The removal of uncommon species did not affect the ecological response of the community, thereby suggesting that common species are driving the spatial patterns of the studied butterflies. Thus, large reductions in costs by reducing sampling effort could be achieved with relatively little loss of information on the species turnover of butterflies and their relationships with the environment. The proposed sampling protocols with reduced effort will allow projects to use their time and financial supply more effectively, showing that cost-effective shortcuts for biodiversity assessments can be useful for conservation, biomonitoring and land use management.  相似文献   

12.
Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700–3200 m a.s.l, along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.  相似文献   

13.
Longevity is a key demographic characteristic of herbaceous plants, but often unknown. While root or rhizome growth ring analysis may allow assessment plant longevity directly and conveniently, so far it has only been used in a few case studies of herbaceous dicotyledonous species. To evaluate whether growth ring analysis is applicable to a large spectrum of herbaceous dicotyledonous plant species, we used plant communities of varying species richness in a 12-year-old grassland biodiversity experiment (Jena Experiment). Cross-sections of the oldest available part of the plants were analysed for all available dicotyledonous perennial herb species (S = 37), which represented three functional groups: legumes, small herbs and tall herbs. We studied 1664 individuals representing the genet in clearly distinguishable plant individuals, and the ramet in clonally growing plant species.Roots of eleven species with permanent primary root were harvested. They showed clearly visible growth rings. Longevity was extended with a mean age of 4.0 years (SE = 0.3). Seven species, which also had a permanent primary root, showed less distinct growth rings. They were shorter-lived (mean age 3.0 years (SE = 0.3)). In six species with obligate clonal growth mostly rhizomes were sampled, but individuals were still identifiable due to their growth habit. For these species growth rings were clearly visible. Longevity of rhizomes was extended (mean age 3.3 years (SE = 0.5)). In 13 species with obligate clonal growth also rhizomes were sampled, but plant individuals were not identifiable. For these species longevity was low (mean age 2.1 years (SE = 0.2)). Community mean age was significantly lower when small herbs were present and higher when tall herbs were present, while legumes had no effect on community mean age. In summary, anatomical analysis of roots and rhizomes is a suitable tool to study the population age structure of a large spectrum of perennial dicotyledonous herbaceous species and therefore opens new perspectives for demographic studies at the community level.  相似文献   

14.
Agricultural improvement (fertilisation, liming, intensification of grazing) of acidic upland pastures results in loss of indigenous flora and notable changes in microbial community structure. Such practices have recently raised concerns regarding the possible impacts on natural ecosystem biodiversity and functioning. The effects of synthetic sheep urine (SSU) and plant species on fungal community structure in upland grassland microcosms were investigated. Plant species typical of agriculturally unimproved (Agrostis capillaris) and improved (Lolium perenne) pastures were treated with low, medium or high concentrations of SSU, with harvests carried out 10 d and 50 d after SSU application. Root biomass was negatively affected by SSU addition whereas shoot biomass did not display any significant change. Fungal richness (number of operational taxonomic units) was negatively correlated with SSU concentration (p < 0.001), and also with time (p < 0.001).Multi-dimensional scaling plots revealed significant changes in fungal community composition, depending on concentration of SSU and plant species type, while canonical correspondence analysis also emphasised the importance of interacting environmental variables. In addition, SIMPER analyses supported the finding that shifts in fungal community composition under different SSU and plant treatments had occurred. Overall, while SSU appeared to be influential in determining fungal community structure, community changes were largely driven by interacting environmental factors. This study contributes to our understanding of the potential implications of intensified farming, in particular increased pressure from grazing animals, on fungal community structure in semi-natural grassland systems.  相似文献   

15.
Recent advances in peatland restoration techniques have succeeded in establishing Sphagnum moss on the remnant cutover peat surface following peat extraction; however, evaluating restoration success remains a key issue. We argue that a Sphagnum-dominated peatland can only be considered functionally ‘restored’ once organic matter accumulation has achieved a thickness where the mean water table position in a drought year does not extend into the underlying formerly cutover peat surface. Here we monitor the spatio-temporal development of organic matter accumulation in a new peat layer for the first 8 years following the restoration of a Québec peatland and couple a simple acrotelm carbon accumulation model and ecohydrological model to assess peatland restoration success.We determined that organic matter accumulation increased from 2.3 ± 1.7 cm 4 years post-restoration to 13.6 ± 6.5 cm 8 years post-restoration. For comparison, at an adjacent non-restored section of the peatland organic matter accumulation was significantly lower (p < 0.001 for all years), with mean thicknesses of 0.2 ± 0.6 and 0.8 ± 1.2 cm for 24 and 28 years post-extraction, respectively. Given the mean summer water deficit at the site (?64 mm), our ecohydrological modeling results suggest that a 19-cm-thick moss layer would be required to offset the water table decrease induced by the summer water deficit. Given the current rate of organic matter accumulation, net primary productivity and the new peat layer decomposition rates determined using litter bags, we estimate it will take 17 years post-restoration to accumulate a 19-cm moss layer. Consequently, we argue that successful peatland restoration may be achieved in the medium-term and that our simple modeling approach can be useful in assessing the long-term impact of restoration on atmospheric carbon dioxide sequestration.  相似文献   

16.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

17.
《农业工程》2014,34(3):170-177
In order to evaluate the potential effects of rest grazing on organic carbon storage on the Stipa baicalensis steppe in Inner Mongolia, compared the S. baicalensis steppes after rest grazing for 3 years, 6 years, and 9 years, using potassium dichromate heating method, this study analyzed the organic carbon storage of plant and soil in the steppes among different periods of rest grazing. The results indicated that as the rest grazing years prolonged, the biomass included above-ground parts, litters and underground plant parts(roots) of the plant communities all increased, meanwhile the carbon content of the biomass increased with the rest grazing years prolonged. For the zero rest grazing (RG0) steppe and the steppes after a rest grazing of 3 years (RG3a), 6 years (RG6a), 9 years (RG9a), the carbon storage in above-ground parts of plant communities were 42.60 g C/m2, 66.33 g C/m2, 83.46 g C/m2, 100.29 g C/m2 respectively; the carbon storage of litters were 7.85 g C/m2, 9.12 g C/m2, 9.18 g C/m2, 11.54 g C/m2 separately; the carbon storage of underground plant parts (0–100 cm) were 281.40 g C/m2, 576.38 g C/m2, 745.33 g C/m2, 1279.61 g C/m2 respectively; and the carbon storage in 0–100 cm soil were 22991.14 g C/m2, 24687.75 g C/m2, 26564.86 g C/m2,33041.55 g C/m2. The results suggested that as the rest grazing years prolonged, the organic carbon storage in plant communities and soil increased. The carbon storage of underground plant parts and soil organic carbon mainly concentrated in 0–40 cm soil. After rest grazing for 3 years, 6 years, and 9 years, the increased soil organic carbon were as the 81.14%, 85.84%, and 89.46% of the total increased carbon; From the perspective of carbon sequestration cost, the total cost of RG3a, RG6a and RG9a were 2903.40 RMB/hm2, 5806.80 RMB/hm2, and 8710.20 RMB/hm2. The cost reduced with the extension of rest grazing years, 0.17 RMB/kg C, 0.16 RMB/kg C, 0.09 RMB/kg C for RG3a, RG6a and RG9a respectively. From the growth characteristics of grassland plants, the spring was one of the two avoid grazing periods, timely rest grazing could effectively restore and update grassland vegetation, and was beneficial to the sustainable use of grassland. From the available data, the organic carbon storage of RG9a was the highest, while the cost of carbon sequestration was the lowest. Therefore, spring rest grazing should be encouraged to continue for it was proved to be a very efficient grassland use measures.  相似文献   

18.
Identification of potential restoration areas is significant and important for implementing a sustainable restoration project and maintaining the ecosystem integrity. We established an eco-hydrological approach to identify potential restoration areas of freshwater wetlands that should and can be restored. Our eco-hydrological method identifies potential restoration areas from three dimensions, namely, transverse, longitudinal and vertical directions. Based on transfer matrix analysis between freshwater wetland and other land cover types and bird habitat suitability assessment, we identified the areas that should be restored under the 1989 and 2000 goals were 36,112 ha and 37,230 ha, respectively. Based on hydrological connectivity and balance between ecological water supply (EWS) and ecological water requirements (EWRs), the area can be restored under the 1989 and 2000 goals were 31,165 ha and 33,963 ha, respectively. The approach and results of this study can help in future restoration efforts in the Yellow River Delta and other similar coastal wetlands.  相似文献   

19.
Plant trait measurement is a very powerful and promising method for assessing the effects of land use change on ecosystem behavior in grasslands, but it is very time-consuming. Hence we pose the following questions for simplifying diagnosis and monitoring: (i) are plant traits (PTs) similar between plant life forms (PLF: grasses, rosettes, upright forbs, legumes) within a plant community? (ii) is it possible to define the main plant community characteristics by measuring traits on one PLF or a limited number of dominant species?Six PTs known for their ability to characterize the capacity of species to exploit resource-rich or -poor environments and for their competitive dominance in response to disturbance (specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), C and N contents, flowering time) were measured on the species of 18 plant communities located in Central Pyrenees. The experiment combined 2 fertility levels and 3 defoliation regimes (cutting, grazing). Comparisons were made between the weighted values at community, PLF and two dominant species levels. Regression analysis shows that there were significant correlations between grasses and rosettes for 4 PTs. For H, N and C:N ratio, data for both grass and rosette PLFs were close to the bisecting line. The largest difference in the intercept was observed for LDMC. On the basis of plant traits weighted for all the species, plant communities were ranked in similar ways for SLA and H (Spearman r > 0.93; p < 0.001) and to a lesser extent for LDMC (r = 0.72; p < 0.001). Convergence in weighted plant traits for different PLFs within a plant community mean that in the studied grasslands, defoliation regime and nutrient availability act as strong filters that impose, at least at PLF level, very similar PFTs. This determines a specific local community structure and composition. An application of this result in managed grasslands is the possibility of focusing on one PLF or a limited number of species for vegetation diagnosis and monitoring.  相似文献   

20.
We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to characterize ecological responses and to develop concentration-based nutrient criteria (derived from ecological effects) for streams in Connecticut, USA, where urbanization is the primary cause of watershed alteration. Mean background TP concentration in the absence of anthropogenic land cover was predicted to be 0.017 mg/l, which was similar to the 25th percentile of all study sites. Increased TP concentrations were significantly correlated with altered diatom community structure, decreased percent low P diatoms and diatoms sensitive to impervious cover, and increased percent high P diatoms, diatoms that increase with greater impervious cover, and chlorophyll a (P < 0.01). Variance partitioning models showed that shared effects of anthropogenic land cover and chemistry (i.e., chemistry affected by land cover) represented the majority of explained variation in diatom metrics and chlorophyll a. Bootstrapped regression trees, threshold indicator taxa analysis, and boosted regression trees identified TP concentrations at which strong responses of diatom metrics and communities occurred, but these values varied among analyses. When considering ecological responses, scientifically defensible and ecologically relevant TP criteria were identified at (1) 0.020 mg/l for designating highest quality streams and restoration targets, above which sensitive taxa steeply declined, tolerant taxa increased, and community structure changed, (2) 0.040 mg/l, at which community level change points began to occur and sensitive diatoms were greatly reduced, (3) 0.065 mg/l, above which most sensitive diatoms were lost and tolerant diatoms steeply increased to their maxima, and (4) 0.082 mg/l, which appeared to be a saturated threshold, beyond which substantially altered community structure was sustained. These criteria can inform anti-degradation policies for high quality streams, discharge permit decisions, and future strategies for watershed development and managment. Our results indicated that management practices and decisions at the watershed scale will likely be important for improving degraded streams and conserving high quality streams. Results also emphasized the importance of incorporating ecological responses and considering the body of evidence from multiple conceptual approaches and statistical analyses for developing nutrient criteria, because solely relying on one approach could lead to misdirected decisions and resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号