首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among terrestrial mammals, the morphology of the gastrointestinal tract reflects the metabolic demands of the animal and individual requirements for processing, distributing, and absorbing nutrients. To determine if gastrointestinal tract morphology is similarly correlated with metabolic requirements in marine mammals, we examined the relationship between basal metabolic rate (BMR) and small intestinal length in pinnipeds and cetaceans. Oxygen consumption was measured for resting bottlenose dolphins and Weddell seals, and the results combined with data for four additional species of carnivorous marine mammal. Data for small intestinal length were obtained from previously published reports. Similar analyses were conducted for five species of carnivorous terrestrial mammal, for which BMR and intestinal length were known. The results indicate that the BMRs of Weddell seals and dolphins resting on the water surface are 1.6 and 2.3 times the predicted levels for similarly sized domestic terrestrial mammals, respectively. Small intestinal lengths for carnivorous marine mammals depend on body size and are comparatively longer than those of terrestrial carnivores. The relationship between basal metabolic rate (kcal day(-1)) and small intestinal length (m) for both marine and terrestrial carnivores was, BMR=142.5 intestinal length(1.20) (r(2)=0.83). We suggest that elevated metabolic rates among marine mammal carnivores are associated with comparatively large alimentary tracts that are presumably required for supporting the energetic demands of an aquatic lifestyle and for feeding on vertebrate and invertebrate prey.  相似文献   

2.
To examine seasonal and inter-annual shifts in the energy requirements of captive harp seals (Phoca groenlandica), metabolic rate and body temperature were repeatedly measured over the annual cycle. Seasonal shifts were evident in both parameters, with spring and summer (April to September) peaks decreasing throughout fall and winter (October to March). Seasonal changes in oxygen consumption concur with earlier published reports and data presented here validate these trends inter-annually. The standard metabolic rates (SMRs) of all seals were lower than predicted during fall/winter, but were indistinguishable from expected rates during spring/summer. Although individual variation in metabolic rate was largely independent of changes in both total body mass and predicted total body fat over the year, such variation was more closely related to changes in predicted lean body mass. Both deep rectal and core body temperatures co-varied with metabolic rate, perhaps indicating a metabolic defense of fat for thermoregulation. The implications of these shifting basal requirements are considered in the light of calculating the impact of the harp seal herd on fisheries resources in the Northwest Atlantic. Received: 18 December 1996 / Accepted: 30 April 1997  相似文献   

3.
Explaining variation in primate population densities is central to understanding primate ecology, evolution, and conservation. Yet no researchers to date have successfully explained variation in primate population density across dietary class and phylogeny. Most previous work has focused on measures of food availability, as access to food energy likely constrains the number of individuals supported in a given area. However, energy output may provide a measure of energy constraints on population density that does not require detailed data on food availability for a given taxon. Across mammals, many studies have shown that population densities generally scale with body mass−0.75. Because individual energy expenditures scale with body mass0.75, population energy use (the product of population density and individual energy use) does not change with body mass, which suggests the existence of energy constraints on population density across body sizes, i.e., taxa are limited to a given amount of energy use, constraining larger taxa to lower densities. We examined population energy use and individual energy expenditure in primates and tested this energy equivalence across body mass. We also used a residual analysis to remove the effects of body mass on primate population densities and energy expenditures using basal metabolic rates (BMR; kcal/d) as a proxy for total daily energy expenditure. After taking into account phylogeny, population energy use did not significantly correlate with body mass. Larger primates, which use more energy per day, live at lower population densities than smaller primates. In addition, we found a significant negative correlation between residuals of BMR from body mass and residuals of population density from body mass after taking phylogeny into account. Thus, energy costs constrain population density across a diverse sample of primates at a given body mass, and primate species that have relatively low BMRs exist at relatively high densities. A better understanding of the determinants of primate energy costs across geography and phylogeny will ultimately help us explain and predict primate population densities.  相似文献   

4.
Zoogeographical effects on the basal metabolic rate (BMR) of 487 mammal species were analyzed using conventional and phylogenetically independent ANCOVA. Minimal BMR variance occurred at a "constrained body mass" of 358 g, whereas maximum variance occurred at the smallest and largest body masses. Significant differences in BMR were identified for similar-sized mammals from the six terrestrial zoogeographical zones (Afrotropical, Australasian, Indomalayan, Nearctic, Neotropical, and Palearctic). Nearctic and Palearctic mammals had higher basal rates than their Afrotropical, Australasian, Indomalayan, and Neotropical counterparts. Desert mammals had lower basal rates than mesic mammals. The patterns were interpreted with a conceptual model describing geographical BMR variance in terms of the influence of latitudinal and zonal climate variability. Low and high basal rates were explained in unpredictable and predictable environments, respectively, especially in small mammals. The BMR of large mammals may be influenced in addition by mobility and predation constraints. Highly mobile mammals tend to have high BMRs that may somehow facilitate fast running speeds, whereas less mobile mammals are generally dietary specialists and are often armored. The model thus integrates physiological and ecological criteria and makes predictions concerning body size and life-history evolution, island effects, and locomotor energetics.  相似文献   

5.
The basal rate of metabolism (BMR) in 533 species of birds, when examined with ANCOVA, principally correlates with body mass, most of the residual variation correlating with food habits, climate, habitat, a volant or flightless condition, use or not of torpor, and a highland or lowland distribution. Avian BMR also correlates with migratory habits, if climate and a montane distribution is excluded from the analysis, and with an occurrence on small islands if a flightless condition and migration are excluded. Residual variation correlates with membership in avian orders and families principally because these groups are behaviorally and ecologically distinctive. However, the distinction between passerines and other birds remains a significant correlate of avian BMR, even after six ecological factors are included, with other birds having BMRs that averaged 74% of the passerine mean. This combination of factors accounts for 97.7% of the variation in avian BMR. Yet, migratory species that belong to Anseriformes, Charadriiformes, Pelecaniformes, and Procellariiformes and breed in temperate or polar environments have mass-independent basal rates equal to those found in passerines. In contrast, penguins belong to an order of polar, aquatic birds that have basal rates lower than passerines because their flightless condition depresses basal rate. Passerines dominate temperate, terrestrial environments and the four orders of aquatic birds dominate temperate and polar aquatic environments because their high BMRs facilitate reproduction and migration. The low BMRs of tropical passerines may reflect a sedentary lifestyle as much as a life in a tropical climate. Birds have BMRs that are 30-40% greater than mammals because of the commitment of birds to an expensive and expansive form of flight.  相似文献   

6.
Predictions associated with opposing selection generating minimum variance in basal metabolic rate (BMR) in mammals at a constrained body mass (CBM; 358 g) were tested. The CBM is presumed to be associated with energetic constraints linked to predation and variable resources at intermediate sizes on a logarithmic mass scale. Opposing selection is thought to occur in response to energetic constraints associated with predation and unpredictable resources. As body size approaches and exceeds the CBM, mammals face increasing risks of predation and daily energy requirements. Fast running speeds may require high BMRs, but unpredictable and low resources may select for low BMRs, which also reduce foraging time and distances and thus predation risks. If these two selection forces oppose each other persistently, minimum BMR variance may result. However, extreme BMR outliers at and close to the CBM should be indicative of unbalanced selection and predator avoidance alternatives (escapers vs. defenders), and may therefore provide indirect support for opposing selection. It was confirmed that body armor in defenders evolves at and above the CBM, and armored mammals had significantly lower BMRs than their nonarmored counterparts. However, analyses comparing the BMR of escapers--the fastest nonarmored runners (Lagomorpha)--with similar-sized counterparts were inconclusive and were confounded by limb morphology associated with speed optimization. These analyses suggest that the risks and costs of predation and the speed limitations of the plantigrade foot may constrain the evolution of large body sizes in plantigrade mammals.  相似文献   

7.
Shrews (genus Sorex, small insectivorous mammals) are well known for their extremely high basal metabolic rates (BMRs) even when corrected for their small body size. We measured energy expenditure of the common shrew (Sorex araneus) under natural conditions (field metabolic rate [FMR]) by doubly labeled water method to test whether FMR is proportional to high BMR in this species. The study was performed in summer in northeastern Poland. In addition to the FMR, we also measured maximum metabolic rates induced by cold exposure and by intense activity (MMRCOLD and MMRRUN, respectively) to evaluate the aerobic reserve (MMR-FMR) in S. araneus. This aerobic reserve was used as an indicator of the potential for metabolic constraints. The FMR averaged 2.31+/-0.32 L CO2 d(-1) (+/-SD) or 58.1+/-8.0 kJ d(-1) in 8.2-g animals. This figure constituted 216%-258% of a value predicted for a "standard" mammal of the same body mass and was the highest mass-specific field metabolic rate in mammals. Because of the high BMR level in S. araneus, the FMR to BMR ratio (2.4) was not far off mammalian standards (median value of 3.1). The rate of water efflux determined in S. araneus (20.2 mL H2O d(-1) or 2.46 mL H2O g(-1) d(-1)) exceeded all figures reported to date in other mammals and was apparently linked to the high FMR level and relatively high water content of shrews' food. Maximal metabolic rates (MMRRUN of 18.1+/-1.6 mL O2 g(-1) h(-1) and MMRCOLD of 23.5+/-1.9 mL O2 g(-1) h(-1)) were not high in proportion to BMR or FMR that resulted in relatively narrow aerobic reserve in S. araneus: 20% when calculated against the MMRRUN and 39% when compared with the MMRCOLD. Our study reveals that S. araneus has high energy costs of living and operates close to its physiological limits.  相似文献   

8.
The factors influencing the basal rate of metabolism (BMR) in 639 species of mammals include body mass, food habits, climate, habitat, substrate, a restriction to islands or highlands, use of torpor, and type of reproduction. They collectively account for 98.8% of the variation in mammalian BMR, but often interact in complex ways. The factor with the greatest impact on BMR, as always, is body mass (accounting for 96.8% of its variation), the extent of its impact reflecting the 10(6.17)-fold range of mass in measured species. The attempt to derive mathematically the power relationship of BMR in mammals is complicated by the necessity to include all of the factors that influence BMR that are themselves correlated with body mass. BMR also correlates with taxonomic affiliation because many taxa are distinguished by their ecological and behavioral characteristics. Phylogeny, reflecting previous commitments, may influence BMR either through a restriction on the realized range of behaviors or by opening new behavioral and ecological opportunities. A new opportunity resulted from the evolution by eutherians of a type of reproduction that permitted species feeding on high quality resources to have high BMRs. These rates facilitated high rates of gas, nutrient, and waste exchange between a pregnant eutherian and her placental offspring. This pattern led to high rates of reproduction in some eutherians, a response denied all monotremes and marsupials, thereby permitting eutherians to occupy cold-temperate and polar environments and to dominate other mammals in all environments to which ecologically equivalent eutherians had access.  相似文献   

9.
Two competing but nonexclusive hypotheses to explain the reduced basal metabolic rate (BMR) of mammals that live and forage underground (fossorial species) are examined by comparing this group with burrowing mammals that forage on the surface (semifossorial species). These hypotheses suggest that the low BMR of fossorial species either compensates for the enormous energetic demands of subterranean foraging (the cost-of-burrowing hypothesis) or prevents overheating in closed burrow systems (the thermal-stress hypothesis). Because phylogentically informed allometric analysis showed that arid burrowing mammals have a significantly lower BMR than mesic ones, fossorial and semifossorial species were compared within these groups. The BMRs of mesic fossorial and semifossorial mammals could not be reliably distinguished, nor could the BMRs of large (>77 g) arid fossorial and semifossorial mammals. This finding favours the thermal-stress hypothesis, because the groups appear to have similar BMRs despite differences in foraging costs. However, in support of the cost-of-burrowing hypothesis, small (<77 g) arid fossorial mammals were found to have a significantly lower BMR than semifossorial mammals of the similar size. Given the high mass-specific metabolic rates of small animals, they are expected to be under severe energy and water stress in arid environments. Under such conditions, the greatly reduced BMR of small fossorial species may compensate for the enormous energetic demands of subterranean foraging.  相似文献   

10.
According to the concept of the “minimal boundary curve for endothermy”, mammals and birds with a basal metabolic rate (BMR) that falls below the curve are obligate heterotherms and must enter torpor. We examined the reliability of the boundary curve (on a double log plot transformed to a line) for predicting torpor as a function of body mass and BMR for birds and several groups of mammals. The boundary line correctly predicted heterothermy in 87.5% of marsupials (n = 64), 94% of bats (n = 85) and 82.3% of rodents (n = 157). Our analysis shows that the boundary line is not a reliable predictor for use of torpor. A discriminate analysis using body mass and BMR had a similar predictive power as the boundary line. However, there are sufficient exceptions to both methods of analysis to suggest that the relationship between body mass, BMR and heterothermy is not a causal one. Some homeothermic birds (e.g. silvereyes) and rodents (e.g. hopping mice) fall below the boundary line, and there are many examples of heterothermic species that fall above the boundary line. For marsupials and bats, but not for rodents, there was a highly significant phylogenetic pattern for heterothermy, suggesting that taxonomic affiliation is the biggest determinant of heterothermy for these mammalian groups. For rodents, heterothermic species had lower BMRs than homeothermic species. Low BMR and use of torpor both contribute to reducing energy expenditure and both physiological traits appear to be a response to the same selective pressure of fluctuating food supply, increasing fitness in endothermic species that are constrained by limited energy availability. Both the minimal boundary line and discriminate analysis were of little value for predicting the use of daily torpor or hibernation in heterotherms, presumably as both daily torpor and hibernation are precisely controlled processes, not an inability to thermoregulate.  相似文献   

11.
Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.  相似文献   

12.
Summary The diet and feeding behaviour of harp seals, Phoca groenlandica, was examined in two high arctic locations. Fish otoliths were used to evaluate dietary composition and aspects of the population dynamics of the major prey species, arctic cod, Boreogadus saida. Harp seals, primarily adults, arrive in the high arctic in mid to late June and depart by early October. Their migration is undertaken specifically for feeding. Harp seals feed intensively on arctic cod, often occurring in dense multispecies aggregations in late summer. The average weight of harp seal stomach contents was high; glutted individuals contained as much as 6% of their body weight in food. Although arctic cod declined in abundance between years, size of cod ingested was similar between areas and years, and overlapped completely with cod taken by other marine mammals. Age/size segregation of arctic cod may account for poor representation of fish <3 years old in the seal diet. Widespread reproductive failure of arctic cod could have a profound influence on the energy balance of adult harp seals since there does not appear to be an alternate food source of equivalent energy value and abundance in arctic waters. Increasing harp seal populations will likely result in increased competition with a host of arctic cod predators, particularly ringed seals.  相似文献   

13.
The present paper reviews recent studies on changes in body mass, body composition and rates of energy expenditure during the breeding season in the black-legged Kittiwake (Rissa tridactyla) on Svalbard (79 degrees N). The main characteristic of the energy budget is a pronounced decrease in body mass as well as basal metabolic rate (BMR) after the eggs have hatched. While most internal organs lose mass in direct proportion to the general decrease in body mass, the liver and kidney masses decrease to a disproportionately greater extent. Since both the liver and the kidney have high intrinsic metabolic rates, these results support an earlier notion that the reduction in body mass is an adaptation to reduce maintenance costs. Alternatively, the reduced BMR is due to a decrease in energy uptake from the gastrointestinal tract, thereby ensuring that undigested food is ready to be regurgitated to the chicks. At the end of the chick-rearing period, the field metabolic rate (FMR) reaches its highest level, probably due to an increased workload associated with chick feeding. This occurs at a time of low body mass and BMR. A pronounced increase in the metabolic scope (FMR/BMR) during the latter part of the chick-rearing period demonstrates that BMR and FMR may change independently of each other and that the ratio FMR/BMR may not be a good measure of energy stress.  相似文献   

14.
Data on blubber depth, body condition, and diet were collected from young of year and juvenile harp seals ( Phoca groenlandica ) in the Barents Sea in the periods February-April and June-October 1990–1997. Harp seal pups feed independently shortly after weaning. In the southern parts of the Barents Sea the diet of harp seal pups consisted mainly of euphausiids ("krill") Thysanoessa sp. and amphipods of the genus Parathemisto . The change in body condition of harp seal pups between weaning (mid-March) and June indicated that considerable amounts of blubber energy, deposited during suckling, were mobilized. This suggests that the early food intake of weaned pups was insufficient to meet the energy requirements. The pattern of low spring and earlysummer body condition, followed by a subsequent rapid improvement in condition during late summer and autumn appeared to occur not only among pups-of-the-year, but also in one- and two-year old harp seals.  相似文献   

15.
In this study we examined the allometry of basal metabolic rate (BMR) of 31 parrot species. Unlike previous reports, we show that parrots per se do not display BMRs that are any different to other captive-raised birds of their body size. An ordinary least squares regression fitted the data best and body mass explained 95% of the variation in BMR. There was no phylogenetic signal in the BMR data. We also provide new data for the Greater Vasa Parrot (Coracopsis vasa) of Madagascar. We tested the hypotheses that C. vasa may, because of its insular existence, display conservative energetic traits (low BMR, use of adaptive heterothermy) similar to those observed in several Malagasy mammals. However, this was not the case. C. vasa had a higher BMR than other parrots, especially during summer, when BMR was up-regulated by 50.5% and was 95.7% higher than predicted from an ordinary least squares (OLS) allometry of parrots (BMR = 0.042M b0.649, BMR in Watts, M b in grammes). Compared with BMR data for 94 captive-raised bird species, the winter and summer BMRs were, respectively, 45.5 and 117.8% higher than predicted by a phylogenetic generalised least squares (PGLS) allometry (BMR = 0.030M b0.687, BMR in Watts, M b in grammes). The summer up-regulation of BMR is the highest recorded for a bird of any size to date. We suggest that the costs of a high summer BMR may be met by the unusual cooperative breeding system of C. vasa in which groups of males feed the female and share paternity. The potential breeding benefits of a high summer BMR are unknown.  相似文献   

16.
赵志军  曹静  陈可新 《兽类学报》2014,34(2):149-157
为阐明小型哺乳动物体重和能量代谢的季节性变化以及生理调节机制,将黑线仓鼠驯化于自然环境下12个月,测定其体重、能量收支、身体组织器官和血清瘦素水平的季节性变化。黑线仓鼠能量摄入和支出的季节性变化显著,冬季摄入能、基础代谢率(BMR)、非颤抖性产热(NST)显著高于夏季。体重季节性变化不显著,但身体组织器官重量呈现显著的季节性变化,冬季肝脏、心脏、肾脏以及消化道重量显著高于夏季。体脂含量夏季最高,冬季最低,冬季显著低于夏、秋和春季(P <0.01)。血清瘦素水平的季节性变化显著,夏季瘦素水平比秋、冬季分别高88.2% 和52.4% (P <0.05)。结果表明,黑线仓鼠体重维持季节性稳定,与“调定点假说”的预测不同;但脂肪含量和血清瘦素季节性变化显著,符合该假说。夏季血清瘦素升高具有抑制能量摄入的作用,冬季血清瘦素可能是促进代谢产热的重要因子,瘦素对能量代谢和体重的调节作用与气候的季节性变化有关。    相似文献   

17.
Despite evidence that some individuals achieve both superiorreproductive performance and high survivorship, the factorsunderlying variation in individual quality are not well understood.The compensation and increased-intake hypotheses predict thatbasal metabolic rate (BMR) influences reproductive performance;if so, variation in BMR may be related to differences in individualquality. We evaluated whether BMR measured during the incubationperiod provides a proximate explanation for variation in individualquality by measuring the BMRs and reproductive performance ofLeach's storm-petrels (Oceanodroma leucorhoa) breeding on KentIsland, New Brunswick, Canada, during 2000 and 2001. We statisticallycontrolled for internal (body mass, breeding age, sex) and external(year, date, time of day) effects on BMR. We found that maleswith relatively low BMRs hatched their eggs earlier in the seasonand that their chicks' wing growth rates were faster comparedto males with relatively high BMRs. Conversely, BMR was notrelated to egg volume, hatching date, or chick growth rate forfemales or to lifetime (23 years) hatching success for eithersex. Thus, for males but not for females, our results supportthe compensation hypothesis. This hypothesis predicts that animalswith low BMRs will achieve better reproductive performance thananimals with high BMRs because they have lower self-maintenancecosts and therefore can apportion more energy to reproduction.These results provide evidence that intraspecific variationin reproductive performance is related to BMR and suggest thatBMR may influence individual quality in males.  相似文献   

18.
The physiological requirements of reproduction are predicted to generate a link between energy, physiology and life history traits. Simultaneously, low maintenance costs, measured by energy consumption, are expected to be advantageous. Here we investigated fitness relatedness of traits by estimating genetic correlations between, and inbreeding depression for, body mass, basal metabolic rate (BMR) and other life history characters in a wild rodent, Myodes glareolus. The narrow-sense heritability of absolute and mass corrected BMRs were high for females (h2 = 0.48 and 0.42) but low and non-significant for males (0.32 and 0.09). A significant positive genetic correlation between BMR and litter size suggests that traits connected to female fecundity might favour higher metabolism (i.e. support increased intake hypothesis). However, the estimates of inbreeding depression indicate that, while higher values of body mass and female litter size could be positively associated with overall fitness, the association between BMR and overall fitness in bank voles would be negative (i.e. support compensation hypothesis). This result suggests that the advantages of larger litters and larger body mass might be evolutionary constrained by high costs of maintenance of those traits, as reflected by the level of basal metabolism.  相似文献   

19.
We studied kittiwakes (Rissa tridactyla) breeding near Ny-Ålesund (79° N, 12° E) on Svalbard. In 1997, the basal metabolic rates (BMRs) of 17 breeding females were measured during the incubation and chick-rearing periods. The mean body mass of the kittiwakes decreased significantly (by 10%) between the incubation and chick-rearing periods. At the same time, both the whole-body and mass-specific BMRs decreased significantly. There was a positive and significant relationship between the BMR residuals from the incubation period and those from the chick-rearing period. Thus, the BMR of incubating female kittiwakes is a significant predictor of their BMR during the chick-rearing period. New BMR data were collected in 1998 from ten of these females, measured around the chick-hatching date. Repeatability values were calculated using either (i) the data for eight individuals for which three BMR measurements existed, or (ii) all the data from both years, yielding significant repeatabilities of 0.52 and 0.35, respectively. These values indicate that between 48 and 65% of the observed variation in BMR is due to intraindividual variability, while between-individual variability accounts for 35 to 52% of the variation in the BMR. This is the first report of a significant repeatability of the BMR of an endothermic organism across an elapsed time of more than one day.  相似文献   

20.
《农业工程》2014,34(6):320-324
Shortage of food resources has significant effects on many physiological parameters of animals. The aim of the present study was to examine the relationship between the energetics countermeasures in response to food restriction and the levels of metabolism in Eothenomy miletus. Survival rate, body mass, basal metabolic rate (BMR), nonshivering thermogenesis (NST), body fat mass, serum leptin levels and other physiological parameters were measured. Animals were divided into high-BMR (hBMR) and low-BMR (lBMR) group. The two groups were restricted to 70% of ad libitum food intake for 4 weeks. The data showed that food intake increased by 24.5% in hBMR group than that in lBMR group before the experiment. Body mass, body fat mass, BMR and NST with hBMR or lBMR group significantly decreased after food restricting. Eighty percent of E. miletus survived with hBMR group, but 60% of E. miletus survived with lBMR group. Serum leptin levels were positively correlated with body mass, BMR and NST. The results suggested that E. miletus could apply physiological adjustments to adapt the period of food shortage by reducing energy metabolism, providing the support for the “metabolism switch hypothesis”. E. miletus with hBMR had decreased energy expenditure to maintain the normal physiological function. However, lBMR group could not decrease energy expenditure to meet the stress of available energy resource, which led to body mass decreased and mortality rate increased. Serum leptin levels may be involved in the regulation of energy balance and body mass in E. miletus during the food restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号