首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the published data, the authors analyze in detail events resulting in the death of neurons in the substantia nigra (according to the apoptosis scenario) and in the development of Parkinson's disease (idiopathic parkinsonism).  相似文献   

2.
帕金森病发病机制至今未明,近几年研究发现,线粒体依赖性PCD通路的激活在PD发病过程中是不可缺少的,不同形态学表现的细胞死亡形式在帕金森病发病过程中可以共同存在,而所有的这些细胞死亡都归因于PCD共同的上游通路的激活。PCD通路不仅仅是指线粒体介导的caspase依赖性凋亡,还包括非caspase依赖性细胞非凋亡性死亡,比如细胞坏死。这不仅仅是概念上的延伸,更为我们在帕金森病神经保护性治疗上提供了更多的靶点,有助于寻求神经保护的新方法和延缓神经退行性疾病的进程.抗凋亡治疗已经成为帕金森病等神经退行性疾病治疗的新热点,已经证实,caspase抑制剂能够通过抑制caspase的激活,阻止细胞退行性病变。那么将位于caspase执行者上游的Bax作为靶点,抑制Bax的激活与转位,能够产生更为持久显著的神经保护作用。本文综述了近年来相关研究进展。  相似文献   

3.
Cultured rat sympathetic neurons die within 48 h after being deprived of nerve growth factor. Addition of interferons (IFN-alpha/beta or IFN-gamma) prevented the cell death in a dose-dependent manner. Upon longer periods of nerve growth factor deprivation, IFNs failed to maintain survival. Thus, IFNs retarded neuronal death, but did not prevent it. Ligand binding, autoradiography, and cross-linking experiments demonstrated the presence of specific IFN-gamma receptors on sympathetic neurons similar to those seen on other cell types. The possible relationships of the death-suppressing actions of IFNs are compared to the mechanisms of the antiviral or antiproliferative actions of IFNs.  相似文献   

4.
5.
6.
7.

Objectives

Mutations in PTEN inducible kinase-1 (PINK1) induce mitochondrial dysfunction in dopaminergic neurons resulting in an inherited form of Parkinson’s disease. Although PINK1 is present in the heart its exact role there is unclear. We hypothesized that PINK1 protects the heart against acute ischemia reperfusion injury (IRI) by preventing mitochondrial dysfunction.

Methods and Results

Over-expressing PINK1 in HL-1 cardiac cells reduced cell death following simulated IRI (29.2±5.2% PINK1 versus 49.0±2.4% control; N = 320 cells/group P<0.05), and delayed the onset of mitochondrial permeability transition pore (MPTP) opening (by 1.3 fold; P<0.05). Hearts excised from PINK1+/+, PINK1+/− and PINK1−/− mice were subjected to 35 minutes regional ischemia followed by 30 minutes reperfusion. Interestingly, myocardial infarct size was increased in PINK1−/− hearts compared to PINK1+/+ hearts with an intermediate infarct size in PINK1+/− hearts (25.1±2.0% PINK1+/+, 38.9±3.4% PINK1+/− versus 51.5±4.3% PINK1−/− hearts; N>5 animals/group; P<0.05). Cardiomyocytes isolated from PINK1−/− hearts had a lower resting mitochondrial membrane potential, had inhibited mitochondrial respiration, generated more oxidative stress during simulated IRI, and underwent rigor contracture more rapidly in response to an uncoupler when compared to PINK1+/+ cells suggesting mitochondrial dysfunction in hearts deficient in PINK1.

Conclusions

We show that the loss of PINK1 increases the heart''s vulnerability to ischemia-reperfusion injury. This may be due, in part, to increased mitochondrial dysfunction. These findings implicate PINK1 as a novel target for cardioprotection.  相似文献   

8.
《遗传学报》2014,41(11):583-589
Clusterin, a protein associated with multiple functions, is expressed in a wide variety of mammalian tissues. Although clusterin is known to be involved in neurodegenerative diseases, ageing, and tumorigenesis, a detailed analysis of the consequences of gain- or loss-of-function approaches has yet to be performed to understand the underlying mechanisms of clusterin functions. Since clusterin levels change in neurological diseases, it is likely that clusterin contributes to cell death and degeneration in general. Zebrafish was investigated as a model system to study human diseases. During development, zebrafish clusterin was expressed in the notochord and nervous system. Embryonic overexpression of clusterin by mRNA microinjection did not affect axis formation, whereas its knock-down by anti-sense morpholino treatment resulted in neuronal cell death. To analyze the function of clusterin in neurodegeneration, a transgenic zebrafish was investigated, in which nitroreductase expression is regulated under the control of a neuron-specific huC promoter which is active between the stages of early neuronal precursors and mature neurons. Nitroreductase turns metronidazole into a cytotoxic agent that induces cell death within 12 h. After metronidazole treatment, transgenic zebrafish showed neuron-specific cell death. Interestingly, we also observed a dramatic induction of clusterin expression in the brain and spinal cord in these fish, suggesting a direct or indirect role of clusterin in neuronal cell death and thus, more generally, in neurodegeneration.  相似文献   

9.
10.
Loss-of-function mutations in PINK1, which encodes a mitochondrially targeted serine/threonine kinase, result in an early-onset heritable form of Parkinson''s disease. Previous work has shown that PINK1 is constitutively degraded in healthy cells, but selectively accumulates on the surface of depolarized mitochondria, thereby initiating their autophagic degradation. Although PINK1 is known to be a cleavage target of several mitochondrial proteases, whether these proteases account for the constitutive degradation of PINK1 in healthy mitochondria remains unclear. To explore the mechanism by which PINK1 is degraded, we performed a screen for mitochondrial proteases that influence PINK1 abundance in the fruit fly Drosophila melanogaster. We found that genetic perturbations targeting the matrix-localized protease Lon caused dramatic accumulation of processed PINK1 species in several mitochondrial compartments, including the matrix. Knockdown of Lon did not decrease mitochondrial membrane potential or trigger activation of the mitochondrial unfolded protein stress response (UPRmt), indicating that PINK1 accumulation in Lon-deficient animals is not a secondary consequence of mitochondrial depolarization or the UPRmt. Moreover, the influence of Lon on PINK1 abundance was highly specific, as Lon inactivation had little or no effect on the abundance of other mitochondrial proteins. Further studies indicated that the processed forms of PINK1 that accumulate upon Lon inactivation are capable of activating the PINK1-Parkin pathway in vivo. Our findings thus suggest that Lon plays an essential role in regulating the PINK1-Parkin pathway by promoting the degradation of PINK1 in the matrix of healthy mitochondria.  相似文献   

11.
12.
Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone most intensively studied for its actions on insulin secreting β-cells. GLP-1 and its receptor are also found in brain and accumulating evidence indicates that GLP-1 has neuroprotective actions. Here, we investigated whether GLP-1 protects neuronal cells from death evoked by nerve growth factor (NGF) withdrawal. Compromised trophic factor signaling may underlie neurodegenerative diseases ranging from Alzheimer disease to diabetic neuropathies. We report that GLP-1 provides sustained protection of cultured neuronal PC12 cells and sympathetic neurons from degeneration and death caused by NGF deprivation. Past work shows that NGF deprivation induces the pro-apoptotic protein Bim which contributes to neuron death. Here, we find that GLP-1 suppresses Bim induction promoted by NGF deprivation. Thus, GLP-1 may protect neurons, at least in part, by suppressing Bim induction. Our findings support the idea that drugs that mimic or elevate GLP-1 represent potential therapeutics for neurodegenerative diseases.  相似文献   

13.
PINK1 and PARKIN are causal genes for autosomal recessive familial Parkinsonism. PINK1 is a mitochondrial Ser/Thr kinase, whereas Parkin functions as an E3 ubiquitin ligase. Under steady-state conditions, Parkin localizes to the cytoplasm where its E3 activity is repressed. A decrease in mitochondrial membrane potential triggers Parkin E3 activity and recruits it to depolarized mitochondria for ubiquitylation of mitochondrial substrates. The molecular basis for how the E3 activity of Parkin is re-established by mitochondrial damage has yet to be determined. Here we provide in vitro biochemical evidence for ubiquitin-thioester formation on Cys-431 of recombinant Parkin. We also report that Parkin forms a ubiquitin-ester following a decrease in mitochondrial membrane potential in cells, and that this event is essential for substrate ubiquitylation. Importantly, the Parkin RING2 domain acts as a transthiolation or acyl-transferring domain rather than an E2-recruiting domain. Furthermore, formation of the ubiquitin-ester depends on PINK1 phosphorylation of Parkin Ser-65. A phosphorylation-deficient mutation completely inhibited formation of the Parkin ubiquitin-ester intermediate, whereas phosphorylation mimics, such as Ser to Glu substitution, enabled partial formation of the intermediate irrespective of Ser-65 phosphorylation. We propose that PINK1-dependent phosphorylation of Parkin leads to the ubiquitin-ester transfer reaction of the RING2 domain, and that this is an essential step in Parkin activation.  相似文献   

14.
High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity (“nanoelectroporation”), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1–2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6–24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.  相似文献   

15.
Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1) protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2), which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.  相似文献   

16.
The lipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), synthesised by PIKfyve, regulates a number of intracellular membrane trafficking pathways. Genetic alteration of the PIKfyve complex, leading to even a mild reduction in PtdIns(3,5)P2, results in marked neurodegeneration via an uncharacterised mechanism. In the present study we have shown that selectively inhibiting PIKfyve activity, using YM-201636, significantly reduces the survival of primary mouse hippocampal neurons in culture. YM-201636 treatment promoted vacuolation of endolysosomal membranes followed by apoptosis-independent cell death. Many vacuoles contained intravacuolar membranes and inclusions reminiscent of autolysosomes. Accordingly, YM-201636 treatment increased the level of the autophagosomal marker protein LC3-II, an effect that was potentiated by inhibition of lysosomal proteases, suggesting that alterations in autophagy could be a contributing factor to neuronal cell death.  相似文献   

17.
FIP200 (FAK family-interacting protein of 200 kDa) is a conserved protein recently identified as a potential mammalian counterpart of yeast autophagy protein Atg17. However, it remains unknown whether mammalian FIP200 regulates autophagy in vivo. Here we show that neural-specific deletion of FIP200 resulted in cerebellar degeneration accompanied by progressive neuronal loss, spongiosis, and neurite degeneration in the cerebellum. Furthermore, deletion of FIP200 led to increased apoptosis in cerebellum as well as accumulation of ubiquitinated protein aggregates without any deficiency in proteasome catalytic functions. We also observed an increased p62/SQSTM1 accumulation in the cerebellum and reduced autophagosome formation as well as accumulation of damaged mitochondria in the mutant mice. Lastly, analysis of cerebellar neurons in vitro showed reduced JNK activation and increased susceptibility to serum deprivation-induced apoptosis in cerebellar neurons from the mutant mice. Taken together, these results provide strong genetic evidence for a role of FIP200 in the regulation of neuronal homeostasis through its function in autophagy in vivo.  相似文献   

18.
Impairment of proteasomal function has been shown to be implicated in neuronal cell degeneration. The compounds which have antioxidant and anti-inflammatory abilities appear to provide a neuroprotective effect. Flavone apigenin is known to exhibits antioxidant and anti-inflammatory effects. Nevertheless, the effect of apigenin on the proteasome inhibition-induced neuronal apoptosis has not been studied. Therefore, we assessed the effect of apigenin on the proteasome inhibition-induced apoptotic neuronal cell death using differentiated PC12 cells and human neuroblastoma SH-SY5Y cells. Apigenin attenuated the proteasome inhibitors (MG132 and MG115)-induced decrease in the levels of Bid and Bcl-2, increase in the levels of Bax and p53, loss of the mitochondrial transmembrane potential, release of cytochrome c, activation of caspases (-8, -9 and -3), cleavage of PARP-1 and cell death in both cell lines. Apigenin attenuated the production of reactive oxygen species, the depletion and oxidation of glutathione, the formations of malondialdehyde and carbonyls in cell lines treated with proteasome inhibitors. The results show that apigenin appears to attenuate the proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells by suppressing the activation of the mitochondrial pathway, and of the caspase-8- and Bid-dependent pathways. The inhibitory effect of apigenin on the proteasome inhibitor-induced apoptosis appears to be attributed to the suppressive effect on the production of reactive oxygen species, the depletion and oxidation of glutathione and the formations of malondialdehyde and carbonyls.  相似文献   

19.
Du X  Miao M  Ma X  Liu Y  Kuhl JC  Martin GB  Xiao F 《Molecular plant》2012,5(5):1058-1067
In tomato, the NBARC-LRR resistance (R) protein Prf acts in concert with the Pto or Fen kinase to determine immunity against Pseudomonas syringae pv. tomato (Pst). Prf-mediated defense signaling is initiated by the recognition of two sequence-unrelated Pst-secreted effector proteins, AvrPto and AvrPtoB, by tomato Pto or Fen. Prf detects these interactions and activates signaling leading to host defense responses including localized programmed cell death (PCD) that is associated with the arrest of Pst growth. We found that Prf variants with single amino acid substitutions at D1416 in the IHD motif (isoleucine-histidine-aspartic acid) in the NBARC domain cause effector-independent PCD when transiently expressed in leaves of Nicotiana benthamiana, suggesting D1416 plays an important role in activation of Prf. The N-terminal region of Prf (NPrf) and the LRR domain are required for this autoactive Prf cell death signaling but dispensable for accumulation of the Prf(D1416V) protein. Significantly, co-expression of the Prf LRR but not NPrf, with Prf(D1416V), AvrPto/Pto, AvrPtoB/Pto, an autoactive form of Pto (Pto(Y207D)), or Fen completely suppresses PCD. However, the Prf LRR does not interfere with PCD caused by Rpi-blb1(D475V), a distinct R protein-mediated PCD signaling event, or that caused by overexpression of MAPKKKα, a protein acting downstream of Prf. Furthermore, we found the Prf(D1416V) protein is unable to accumulate in plant cells when co-expressed with the Prf LRR domain, likely explaining the cell death suppression. The mechanism for the LRR-induced degradation of Prf(D1416V) is unknown but may involve interference in the intramolecular interactions of Prf or to binding of the unattached LRR to other host proteins that are needed for Prf stability.  相似文献   

20.
Abstract: We examined the ability of ceramide and sphingomyelinase (SMase) to prevent neuronal programmed cell death (PCD). We found that a cell-permeable ceramide analogue prevented neuronal PCD when applied to established sympathetic neuron primary cultures at the time of nerve growth factor (NGF) deprivation. Other amphiphilic lipids such as oleic acid failed to prevent cell death. Exogenous SMase also showed the same effect, probably by raising the intracellular ceramide level by sphingomyelin (SM) breakdown. Phosphocholine, another hydrolytic product of SM by SMase, did not prevent cell death. Other phospholipases, such as phospholipase C and phospholipase A2, could not prevent cell death. Given the recent findings that the SM cycle is activated to increase the intracellular ceramide level on NGF binding to the low-affinity NGF receptor (LNGFR) and that NGF binding to LNGFR suppresses apoptosis in neural cell lines, our results suggest the possibility of the SM cycle as a signaling mechanism transducing the PCD-preventing activity of NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号