首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62 MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62 MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.  相似文献   

2.
IntroductionNanochambers present some advantages in terms of energy independence and absolute dose measurement for small field dosimetry in the SBRT scenario. Characterization of a micro-chamber prototype was carried out both under flattened and flattening-filter-free (FFF) beams with particular focus on stem effect.MethodsThe study included characterization of leakage and stem effects, dose rate and dose per pulse dependence, measurement of profiles, and percentage depth doses (PDDs). Ion collection efficiency and polarity effects were measured and evaluated against field size and dose per pulse. The 6_MV, 6_MV_FFF and 10_MV FFF beams of a Varian EDGE were used. Output factors were measured for field sizes ranging from 0.8 × 0.8 cm2 to 20 × 20 cm2 and were compared with other detectors.ResultsThe 2 mm diameter of this chamber guarantees a high spatial resolution with low penumbra values. In orthogonal configuration a strong stem (and cable) effect was observed for small fields. Dose rate and dose per pulse dependence were <0.3% and 0.6% respectively for the whole range of considered values. The Nanochamber exhibits a field size (FS) dependence of the polarity correction >2%. The OF values were compared with other small field detectors showing a good agreement for field sizes >2 × 2 cm2. The large field over-response was corrected applying kpol(FS).ConclusionsNanochamber is an interesting option for small field measurements. The spherical shape of the active volume is an advantage in terms of reduced angular dependence. An interesting feature of the Nanochamber is its beam quality independence and, as a future development, the possibility to use it for small field absolute dosimetry.  相似文献   

3.
In electron radiotherapy, shielding material is required to attenuate beam and scatter. A newly introduced shielding material, tungsten functional paper (TFP), has been anticipated to become a very useful device that is lead-free, light, flexible, and easily processed, containing very fine tungsten powder at as much as 80% by weight. The purpose of this study was to investigate the dosimetric changes due to TFP shielding for electron beams. TFP (thickness 0–15 mm) was placed on water or a water-equivalent phantom. Percentage depth ionization and transmission were measured for 4, 6, and 9 MeV electron beams. Off-center ratio was also measured using film dosimetry at depth of dose maximum under similar conditions. Then, beam profiles and transmission with two shielding materials, TFP and lead, were evaluated. Reductions of 95% by using TFP at 0.5 cm depth occurred at 4, 9, and 15 mm with 4, 6, and 9 MeV electron beams, respectively. It is found that the dose tend to increase at the field edge shaped with TFP, which might be influenced by the thickness. TFP has several unique features and is very promising as a useful tool for radiation protection for electron beams, among others.  相似文献   

4.
PurposeTo measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique.MethodMeasurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100–220 MeV), field sizes ((2 × 2)–(20 × 20) cm2) and modulation widths (0–15 cm).ResultsFor pristine proton peak irradiations, large variations of neutron H1(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H1(10)/D for pristine proton pencil beams varied between 0.04 μSv Gy−1 at beam energy 100 MeV and a (2 × 2) cm2 field at 2.25 m distance and 90° angle with respect to the beam axis, and 72.3 μSv Gy−1 at beam energy 200 MeV and a (20 × 20) cm2 field at 1 m distance along the beam axis.ConclusionsThe obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters.  相似文献   

5.
PurposeTo investigate the degree of 18 and 22 MeV electron beam dose perturbations caused by unilateral hip titanium (Ti) prosthesis.MethodsMeasurements were acquired using Gafchromic EBT2 film in a novel pelvic phantom made out of Nylon-12 slices in which a Ti-prosthesis is embedded. Dose perturbations were measured and compared using depth doses for 8 × 8, 10 × 10 and 11 × 11 cm2 applicator-defined field sizes at 95 cm source-surface-distance (SSD). Comparisons were also made between film data at 100 cm SSD for a 10 × 10 cm2 field and dose calculations made on CMS XiO treatment planning system utilizing the pencil beam algorithm. The extent of dose deviations caused by the Ti prosthesis based on film data was quantified through the dose enhancement factor (DEF), defined as the ratio of the dose influenced by the prosthesis and the unchanged beam.ResultsAt the interface between Nylon-12 and the Ti implant on the prosthesis entrance side, the dose increased to values of 21 ± 1% and 23 ± 1% for 18 and 22 MeV electron beams, respectively. DEFs increased with increasing electron energy and field size, and were found to fall off quickly with distance from the nylon-prosthesis interface. A comparison of film and XiO depth dose data for 18 and 22 MeV gave relative errors of 20% and 25%, respectively.ConclusionThis study outlines the lack of accuracy of the XiO TPS for electron planning in highly heterogeneous media. So a dosimetric error of 20–25% could influence clinical outcome.  相似文献   

6.
PurposeThe increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6 MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6 MV beam was also considered for comparison.MethodsShort term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2–2.2 mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40 × 40 cm2 to 0.6 × 0.6 cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector.ResultsMicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40 × 40 cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3 × 3 cm2) microDiamond and the unshielded silicon diode were in good agreement.ConclusionsMicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2 mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1 cm correction factors accounting for fluence perturbation and volume averaging could be required.  相似文献   

7.
Irradiating a tumor bed with boost dose after whole breast irradiation helps reducing the probability of local recurrence. However, the success of electron beam treatment with a small area aiming to cover a superficial lesion is a dual challenge as it requires an adequate dosimetry beside a double check for dose coverage with an estimation of various combined uncertainty of tumor location and losing lateral electron equilibrium within small field dimensions.Aim of workthis work aims to measure the electron beam fluence within different field dimensions and the deviation from measurement performed in standard square electron applicator beam flatness and symmetry, then to calculate the average range of the correction factor required to overcome the loss of lateral electron equilibrium.Material and methodthe electron beam used in this work generated from the linear accelerator model ELEKTA Precise and dosimetry system used were a pair of PTW Pin Point ion chambers for electron beam dosimetry at standard conditions and assessment of beam quality at a reference depth of measurement, with an automatic water phantom, then a Roos ion chamber was used for absolute dose measurement, and PTW 2Darray to investigate the beam fluence of four applicators 6, 10, 14 and 20 cm2 and 4 rectangular cutouts 6 × 14, 8 × 14, 6 × 17 and 8 × 17 cm2, the second part was clinical application which was performed in a precise treatment planning system and examined boost dose after whole breast irradiation.Resultsrevealed that lower energy (6MeV and 8MeV) showed the loss of lateral electron equilibrium and deviation from measurements of a standard applicator more than the high energy (15 MeV) which indicated that the treatment of superficial dose with 6MeV required higher monitor unit to allow for the loss of lateral electron equilibrium and higher margin as well.  相似文献   

8.
AimThe aim of the investigation was to determine the undesirable dose coming from neutrons produced in reactions (p,n) in irradiated tissues represented by water.BackgroundProduction of neutrons in the system of beam collimators and in irradiated tissues is the undesirable phenomenon related to the application of protons in radiotherapy. It makes that proton beams are contaminated by neutrons and patients receive the undesirable neutron dose.Materials and methodsThe investigation was based on the Monte Carlo simulations (GEANT4 code). The calculations were performed for five energies of protons: 50 MeV, 55 MeV, 60 MeV, 65 MeV and 75 MeV. The neutron doses were calculated on the basis of the neutron fluence and neutron energy spectra derived from simulations and by means of the neutron fluence–dose conversion coefficients taken from the ICRP dosimetry protocol no. 74 for the antero-posterior irradiation geometry.ResultsThe obtained neutron doses are much less than the proton ones. They do not exceed 0.1%, 0.4%, 0.5%, 0.6% and 0.7% of the total dose at a given depth for the primary protons with energy of 50 MeV, 55 MeV, 60 MeV, 65 MeV and 70 MeV, respectively.ConclusionsThe neutron production takes place mainly along the central axis of the beam. The maximum neutron dose appears at about a half of the depth of the maximum proton dose (Bragg peak), i.e. in the volume of a healthy tissue. The doses of neutrons produced in the irradiated medium (water) are about two orders of magnitude less than the proton doses for the considered range of energy of protons.  相似文献   

9.
The aim of this study was to determine the surface doses using GafChromic EBT films and compare them with plane-parallel ionization chamber measurements for 6 and 18 MV high energy photon beams. The measurements were made in a water equivalent solid phantom in the build-up region of the 6 and 18 MV photon beams at 100 cm SSD for various field sizes. Markus type plane-parallel ion chamber with fixed-separation between collecting electrodes was used to measure the percent depth doses. GafChromic EBT film measurements were performed both on the phantom surface and maximum dose depth at the same geometry with ion chamber measurements. The surface doses found using GafChromic EBT film were 15%, 20%, 29%and 39% ± 2% (1SD) for 6 MV photons, 6%, 11%, 23% and 32% ± 2% (1SD) for 18 MV photons at 5, 10, 20 and 30 cm2 field sizes, respectively. GafChromic EBT film provides precise measurements for surface dose in the high energy photons. Agreement between film and plane-parallel chamber measurements was found to be within ±3% for 18 MV photon beams. There was 5% overestimate on the surface doses when compared with the plane-parallel chamber measurements for all field sizes in the 6 MV photon beams.  相似文献   

10.
AimThe purpose of this study was to investigate the crosstalk effects between adjacent pixels in a thin silicon detector with 50 um thickness.BackgroundThere are some limitations in the applications of detectors in hadron therapy. So it is necessary to have a detector with concurrent excellent time and resolution. In this work, the GEANT4 toolkit was applied to estimate the best value for energy cutoff in the thin silicon detector in order to optimize the detector.Materials and MethodsGEANT4 toolkit was applied to simulate the transport and interactions of particles. Calculations were performed for a thin silicon detector (2 cm × 2 cm×0.005 cm) irradiated by proton and carbon ion beams. A two-dimensional array of silicon pixels in the x-y plane with 100 um × 100 um × 50 um dimensions build the whole detector. In the end, the ROOT package is used to interpret and analyze the resultsResultsIt is seen that by the presence of energy cutoff, pixels with small deposited energy are ignored. The best values for energy cutoff are 0.01 MeV and 0.7 MeV for proton and carbon ion beams, respectively. By applying these energy cutoff values, efficiency and purity values are maximized and also minimum output errors are achieved.ConclusionsThe results are reasonable, good and useful to optimize the geometry of future silicon detectors in order to be used as beam monitoring in hadron therapy applications.  相似文献   

11.
BackgroundTo analyze and compare dose distribution homogeneity in selected points (especially in the chest wall region) for patients irradiated with two different TBI techniques to achieve a uniform total dose (excluding lungs area) specified in the range of 11.4–14.0 Gy.Material and methodsFrom August 2000 to December 2009, a group of 158 patients was treated by the use of 15 MV photon irradiation consisting of six fractions: four opposed lateral and two anterior–posterior/posterior–anterior (AP/PA). Patients were irradiated with the fraction dose of 2 Gy twice a day for 3 consecutive days. The prescribed dose to PC point (specified at intersection of the beam axis with the mid-plane of the patient irradiated laterally) was 12 Gy. Since January 2010 until closing the study, another group of 50 patients was treated according to a modified protocol. The treatment was carried out in six lateral fractions only, twice a day, for three following days and a lateral lung shield was used for a part of total irradiation time. The measurements of doses in 20 selected points of patient's body were carried out by means of MOSFET detectors.ResultsThe modified TBI technique allows to achieve an expected homogenous dose in the points of interest similar to that obtained by using the initial protocol. The calculated and measured in vivo doses met the specified range of 11.4–14 Gy for both applied TBI protocols.ConclusionsOur results indicate that for all patients the homogenous dose distribution in the specified range was achieved.  相似文献   

12.
BackgroundHigh-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear.AimThe aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers.Materials and methodsThe measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy.ResultsThe fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ~106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator.ConclusionThe thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from the simple capture reaction (n,γ) (from minutes to hours) are long enough to accumulate radioactivity of components of the accelerator head. The radiation emitted by induced radioisotopes causes the additional doses to staff operating the accelerators.  相似文献   

13.
New version 13.6.23 of the electron Monte Carlo (eMC) algorithm in Varian Eclipse™ treatment planning system has a model for 4 MeV electron beam and some general improvements for dose calculation. This study provides the first overall accuracy assessment of this algorithm against full Monte Carlo (MC) simulations for electron beams from 4 MeV to 16 MeV with most emphasis on the lower energy range. Beams in a homogeneous water phantom and clinical treatment plans were investigated including measurements in the water phantom. Two different material sets were used with full MC: (1) the one applied in the eMC algorithm and (2) the one included in the Eclipse™ for other algorithms. The results of clinical treatment plans were also compared to those of the older eMC version 11.0.31. In the water phantom the dose differences against the full MC were mostly less than 3% with distance-to-agreement (DTA) values within 2 mm. Larger discrepancies were obtained in build-up regions, at depths near the maximum electron ranges and with small apertures. For the clinical treatment plans the overall dose differences were mostly within 3% or 2 mm with the first material set. Larger differences were observed for a large 4 MeV beam entering curved patient surface with extended SSD and also in regions of large dose gradients. Still the DTA values were within 3 mm. The discrepancies between the eMC and the full MC were generally larger for the second material set. The version 11.0.31 performed always inferiorly, when compared to the 13.6.23.  相似文献   

14.
PurposeTo investigate and improve the domestic standard of radiation therapy in the Republic of Korea.MethodsOn-site audits were performed for 13 institutions in the Republic of Korea. Six items were investigated by on-site visits of each radiation therapy institution, including collimator, gantry, and couch rotation isocenter check; coincidence between light and radiation fields; photon beam flatness and symmetry; electron beam flatness and symmetry; physical wedge transmission factors; and photon beam and electron beam outputs.ResultsThe average deviations of mechanical collimator, gantry, and couch rotation isocenter were less than 1 mm. Those of radiation isocenter were also less than 1 mm. The average difference between light and radiation fields was 0.9 ± 0.6 mm for the field size of 20 cm × 20 cm. The average values of flatness and symmetry of the photon beams were 2.9% ± 0.6% and 1.1% ± 0.7%, respectively. Those of electron beams were 2.5% ± 0.7% and 0.6% ± 1.0%, respectively. Every institutions showed wedge transmission factor deviations less than 2% except one institution. The output deviations of both photon and electron beams were less than ±3% for every institution.ConclusionsThrough the on-site audit program, we could effectively detect an inappropriately operating linacs and provide some recommendations. The standard of radiation therapy in Korea is expected to improve through such on-site audits.  相似文献   

15.
In the present work, Monte Carlo (MC) models of electron beams (energies 4, 12 and 18 MeV) from an Elekta SL25 medical linear accelerator were simulated using EGSnrc/BEAMnrc user code. The calculated dose distributions were benchmarked by comparison with measurements made in a water phantom for a wide range of open field sizes and insert combinations, at a single source-to-surface distance (SSD) of 100 cm. These BEAMnrc models were used to evaluate the accuracy of a commercial MC dose calculation engine for electron beam treatment planning (Oncentra MasterPlan Treament Planning System (OMTPS) version 1.4, Nucletron) for two energies, 4 and 12 MeV. Output factors were furthermore measured in the water phantom and compared to BEAMnrc and OMTPS. The overall agreement between predicted and measured output factors was comparable for both BEAMnrc and OMTPS, except for a few asymmetric and/or small insert cutouts, where larger deviations between measurements and the values predicted from BEAMnrc as well as OMTPS computations were recorded. However, in the heterogeneous phantom, differences between BEAMnrc and measurements ranged from 0.5 to 2.0% between two ribs and 0.6–1.0% below the ribs, whereas the range difference between OMTPS and measurements was the same (0.5–4.0%) in both areas. With respect to output factors, the overall agreement between BEAMnrc and measurements was usually within 1.0% whereas differences up to nearly 3.0% were observed for OMTPS. This paper focuses on a comparison for clinical cases, including the effects of electron beam attenuations in a heterogeneous phantom. It, therefore, complements previously reported data (only based on measurements) in one other paper on commissioning of the VMC++ dose calculation engine.These results demonstrate that the VMC++ algorithm is more robust in predicting dose distribution than Pencil beam based algorithms for the electron beams investigated.  相似文献   

16.
In this work dosimetric parameters of two multi-leaf collimator (MLC) systems, namely the beam modulator (BM), which is the MLC commercial name for Elekta “Synergy S” linear accelerator and Radionics micro-MLC (MMLC), are compared using measurements and Monte Carlo simulations. Dosimetric parameters, such as percentage depth doses (PDDs), in-plane and cross-plane dose profiles, and penumbras for different depths and field sizes of the 6 MV photon beams were measured using ionization chamber and a water tank. The collimator leakages were measured using radiographic films. MMLC and BM were modeled using the EGSnrc-based BEAMnrc Monte Carlo code and above dosimetric parameters were calculated. The energy fluence spectra for the two MLCs were also determined using the BEAMnrc and BEAMDP. Dosimetric parameters of the two MLCs were similar, except for penumbras. Leaf-side and leaf-end 80–20% dose penumbras at 10 cm depth for a 10 × 10 cm2 field size were 4.8 and 5.1 mm for MMLC and 5.3 mm and 6.3 mm for BM, respectively. Both Radionics MMLC and Elekta BM can be used effectively based on their dosimetric characteristics for stereotactic radiosurgery and radiotherapy, although the former showed slightly sharper dose penumbra especially in the leaf-end direction.  相似文献   

17.
AimThe investigation of the irradiation time calculation accuracy of the GGPB algorithm used for IORT.BackgroundConventionally, breast conserving therapy consists of breast conserving surgery followed by postoperative whole breast irradiation and boost. The use of intraoperative radiotherapy (IORT) enables the boost to be delivered already during the surgery. In this case, the treatment dose for IORT can be calculated by use of General Gaussian Pencil Beam (GGPB) algorithm, which is implemented in TPS Eclipse.Materials and methodsPDDs and OFs for electron beams from Mobetron and all available applicators were measured in order to configure the GGPB algorithm. Afterwards, the irradiation times for the prescribed dose of 3 Gy were calculated by means of it. The results of calculations were verified in the water phantom using the Marcus ionization chamber.ResultsThe results differed between energies. For 6 MeV the irradiation times calculated by the GGPB algorithm were correct, for the energy of 9 MeV they were too small and for the energy of 4 MeV they were too large for applicators with smaller diameters, while acceptable for the remaining ones.ConclusionThe GGPB algorithm can be used in intraoperative radiotherapy for energy and applicator sets for which no significant difference between the measured and the prescribed dose was obtained. For the rest of energy-applicator sets the configuration should be verified and possibly repeated.  相似文献   

18.
PurposeTo assess the dosimetric impact of a patient positioning device for prone breast radiotherapy and assess the accuracy of a treatment planning system (TPS) in predicting this impact.MethodsBeam attenuation and build-up dose perturbations, quantified by ionization chamber and radiochromic film dosimetry, were evaluated for 3 components of the patient positioning device: the carbon fiber baseplate, the support cushions and the support wedge for the contralateral breast. Dose calculations were performed using the XVMC dose engine implemented in the Monaco TPS. All components were included during planning CT acquisition.ResultsBeam attenuation amounted to 7.57% (6 MV) and 5.33% (15 MV) for beams obliquely intersecting the couchtop–baseplate combination. Beams traversing large sections of the support wedge were attenuated by 12.28% (6 MV) and 9.37% (15 MV). For the support cushion foam, beam attenuation remained limited to 0.11% (6 MV) and 0.08% (15 MV) per centimeter thickness. A substantial loss of dose build-up was detected when irradiating through any of the investigated components. TPS dose calculations accurately predicted beam attenuation by the baseplate and support wedge. A manual density overwrite was needed to model attenuation by the support cushion foam. TPS dose calculations in build-up regions differed considerably from measurements for both open beams and beams traversing the device components.ConclusionsIrradiating through the components of the positioning device resulted in a considerable degradation of skin sparing. Inclusion of the device components in the treatment planning CT allowed to accurately model the most important attenuation effect, but failed to accurately predict build-up doses.  相似文献   

19.
PurposeThis study evaluates the radiological properties of different 3D printing materials for a range of photon energies, including kV and MV CT imaging and MV radiotherapy beams.MethodsThe CT values of a number of materials were measured on an Aquilion One CT scanner at 80 kVp, 120 kVp and a Tomotherapy Hi Art MVCT imaging beam. Attenuation of the materials in a 6 MV radiotherapy beam was investigated.ResultsPlastic filaments printed with various infill densities have CT values of −743 ± 4, −580 ± 1 and −113 ± 3 in 120 kVp CT images which approximate the CT values of low-density lung, high-density lung and soft tissue respectively. Metal-infused plastic filaments printed with a 90% infill density have CT values of 658 ± 1 and 739 ± 6 in MVCT images which approximate the attenuation of cortical bone. The effective relative electron density REDeff is used to describe the attenuation of a megavoltage treatment beam, taking into account effects relating to the atomic number and mass density of the material. Plastic filaments printed with a 90% infill density have REDeff values of 1.02 ± 0.03 and 0.94 ± 0.02 which approximate the relative electron density RED of soft tissue. Printed resins have REDeff values of 1.11 ± 0.03 and 1.09 ± 0.03 which approximate the RED of bone mineral.Conclusions3D printers can model a variety of body tissues which can be used to create phantoms useful for both imaging and dosimetric studies.  相似文献   

20.
Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3–5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate.In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150 MeV, 190 MeV and 230 MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton’s direction and position.A scattering angle cut of 8.7 mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号