首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

To investigate the efficiency of a cofactor regeneration enzyme co-expressed with a glycerol dehydrogenase for the production of 1,3-dihydroxyacetone (DHA).

Results

In vitro biotransformation of glycerol was achieved with the cell-free extracts containing recombinant GlyDH (glycerol dehydrogenase from Escherichia coli), LDH (lactate dehydrogenase form Bacillus subtilis) or LpNox1 (NADH oxidase from Lactobacillus pentosus), giving DHA at 1.3 g l?1 (GlyDH/LDH) and 2.2 g l?1 (GlyDH/LpNox1) with total turnover number (TTN) of NAD+ recycling of 6039 and 11100, respectively. Whole cells of E. coli (GlyDH–LpNox1) co-expressing both GlyDH and LpNox1 were constructed and converted 10 g glycerol l?1 to DHA at 0.2–0.5 g l?1 in the presence of zero to 2 mM exogenous NAD+. The cell free extract of E. coli (GlyDH–LpNox) converted glycerol (2–50 g l?1) to DHA from 0.5 to 4.0 g l?1 (8–25 % conversion) without exogenous NAD+.

Conclusions

The disadvantage of the expensive consumption of NAD+ for the production of DHA has been overcome.
  相似文献   

2.
This study aimed at increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting NADH oxidation from adenosine triphosphate (ATP)-production pathway (oxidative phosphorylation pathway) to non-ATP production pathway (fermentative pathway). Two respiratory-deficient mutants, RD-17 and RD-18, were screened and selected after ethidium bromide (EtBr) mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, cytochrome aa 3 and b in electron transfer chain (ETC) of RD-18 and cytochrome b in RD-17 were disrupted. As a consequence, the activities of key ETC enzymes of the mutant RD-18, including F0F1-ATP synthase, complex I, complex I + III, complex II + III, and complex IV, decreased by 22.2, 41.6, 53.1, 23.6, and 84.7%, respectively. With the deficiency of cytochromes in ETC, a large amount of excessive cytosolic NADH was accumulated, which hampered the further increase of the glycolytic flux. An exogenous electron acceptor, acetaldehyde, was added to the strain RD-18 culture to oxidize the excessive NADH. Compared with the parent strain, the concentration of pyruvate and the glucose consumption rate of strain RD-18 were increased by 26.5 and 17.6%, respectively, upon addition of 2.1 mM of acetaldehyde. The strategy for increasing the glycolytic flux in T. glabrata by redirecting the NADH oxidation pathway may provide an alternative approach to enhance the glycolytic flux in yeast.  相似文献   

3.
It is well known that environmental and genetic perturbations have major effects on the metabolic behavior of cells. In this work, a model that utilizes existing knowledge of oxygen and redox sensing/regulatory system to assist elementary flux modes (EFMs) has been developed and was carried out to predict the metabolic potential of Klebsiella pneumoniae for the production of 1,3‐propanediol (1,3‐PD) under anaerobic and aerobic conditions. It was found that the theoretical optimal 1,3‐PD yield could reach to 0.844 mol mol?1 if the pentose phosphate pathway (PPP), and transhydrogenase had a high flux under anaerobic condition. However, PPP had little influence on the theoretical 1,3‐PD yield, and the flux through tricarboxylic acid (TCA) cycle was high under aerobic conditions. In addition, the effect of oxygen level on the 1,3‐PD and biomass was further analyzed. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
5.
6.
Previously, we constructed a glycerol oxidative pathway-deficient mutant strain of Klebsiella pneumoniae by inactivation of glycerol dehydrogenase (dhaD) to eliminate by-product synthesis during production of 1,3-propanediol (1,3-PD) from glycerol. Although by-product formation was successfully blocked in the resultant strain, the yield of 1,3-PD was not enhanced, probably because dhaD disruption resulted in insufficient regeneration of the cofactor NADH essential for the activity of 1,3-PD oxidoreductase (DhaT). To improve cofactor regeneration, in the present study we overexpressed an NAD+-dependent aldehyde dehydrogenase in the recombinant strain. To this end, an aldehyde dehydrogenase AldHk homologous to E. coli AldH but with NAD+-dependent propionaldehyde dehydrogenase activity was identified in K. pneumoniae. Functional analysis revealed that the substrate specificity of AldHk embraced various aldehydes including propionaldehyde, and that NAD+ was preferred over NADP+ as a cofactor. Overexpression of AldHk in the glycerol oxidative pathway-deficient mutant AK/pVOTHk resulted in a 3.6-fold increase (0.57 g l−1 to 2.07 g l−1) in the production of 3-hydroxypropionic acid (3-HP), and a 1.1-fold enhancement (8.43 g l−1 to 9.65 g l−1) of 1,3-PD synthesis, when glycerol was provided as the carbon source, compared to the levels synthesized by the control strain (AK/pVOT). Batch fermentation using AK/pVOTHk showed a significant increase (to 70%, w/w) in conversion of glycerol to the reductive metabolites, 1,3-PD and 3-HP, with no production of by-products except acetate.  相似文献   

7.
Klebsiella oxytoca naturally produces a large amount of 2,3-butanediol (2,3-BD), a promising bulk chemical with wide industrial applications, along with various byproducts. In this study, the in silico gene knockout simulation of K. oxytoca was carried out for 2,3-BD overproduction by inhibiting the formation of byproducts. The knockouts of ldhA and pflB genes were targeted with the criteria of maximization of 2,3-BD production and minimization of byproducts formation. The constructed K. oxytoca ΔldhA ΔpflB strain showed higher 2,3-BD yields and higher final concentrations than those obtained from the wild-type and ΔldhA strains. However, the simultaneous deletion of both genes caused about a 50 % reduction in 2,3-BD productivity compared with K. oxytoca ΔldhA strain. Based on previous studies and in silico investigation that the agitation speed during 2,3-BD fermentation strongly affected cell growth and 2,3-BD synthesis, the effect of agitation speed on 2,3-BD production was investigated from 150 to 450 rpm in 5-L bioreactors containing 3-L culture media. The highest 2,3-BD productivity (2.7 g/L/h) was obtained at 450 rpm in batch fermentation. Considering the inhibition of acetoin for 2,3-BD production, fed-batch fermentations were performed using K. oxytoca ΔldhA ΔpflB strain to enhance 2,3-BD production. Altering the agitation speed from 450 to 350 rpm at nearly 10 g/L of acetoin during the fed-batch fermentation allowed for the production of 113 g/L 2,3-BD, with a yield of 0.45 g/g, and for the production of 2.1 g/L/h of 2,3-BD.  相似文献   

8.
Kovtunovych  G.  Lar  O.  Kamalova  S.  Kordyum  V.  Kleiner  D.  Kozyrovska  N. 《Plant and Soil》1999,215(1):1-6
Diazotrophic Klebsiella oxytoca VN 13 was able to lyse pectate, but the lytic activity of cultures grown on non-selective media was weak, and the enzyme was located mainly inside the cells. A small fraction of the population (10-6 to 10-5) was able to grow in a selective medium with sodium polygalacturonate as sole carbon source, and produced increased amounts of the pectinolytic enzyme pectate lyase. When wheat seeds were inoculated with these bacteria, increased levels of this enzyme correlated with a higher rate of internal colonization of wheat roots and with stimulation of wheat growth resulting in higher biomass. This suggests that colonization occurs via lyzed pectin layers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Glycerol as a by-product of biodiesel production is an attractive precursor for producing d-glyceric acid. Here, we demonstrate the successful production of d-glyceric acid based on glycerol via glyceraldehyde in a two-step enzyme reaction with the FAD-dependent alditol oxidase from Streptomyces coelicolor A3(2). The hydrogen peroxide generated in the reaction can be used in detergent, food, and paper industry. In order to apply the alditol oxidase in industry, the enzyme was subjected to protein engineering. Different strategies were used to enhance the substrate specificity towards glycerol. Initial attempts based on rational protein design in the active site region were found unsuccessful to increase activity. However, through directed evolution, an alditol oxidase double mutant (V125M/A244T) with 1.5-fold improved activity for glycerol was found by screening 8,000 clones. Further improvement of activity was achieved by combinatorial experiments, which led to a quadruple mutant (V125M/A244T/V133M/G399R) with 2.4-fold higher specific activity towards glycerol compared to the wild-type enzyme. Through studying the effects of mutations created, we were able to understand the importance of certain amino acids in the structure of alditol oxidase, not only for conferring enzymatic structural stability but also with respect to their influence on oxidative activity.  相似文献   

10.
A two-stage process was evaluated for the fermentation of polymeric feedstocks to ethanol by a single, genetically engineered microorganism. The truncated xylanase gene (xynZ) from the thermophilic bacterium Clostridium thermocellum was fused with the N terminus of lacZ to eliminate secretory signals. This hybrid gene was expressed at high levels in ethanologenic strains of Escherichia coli KO11 and Klebsiella oxytoca M5A1(pLOI555). Large amounts of xylanase (25 to 93 mU/mg of cell protein) accumulated as intracellular products during ethanol production. Cells containing xylanase were harvested at the end of fermentation and added to a xylan solution at 60 degrees C, thereby releasing xylanase for saccharification. After cooling, the hydrolysate was fermented to ethanol with the same organism (30 degrees C), thereby replenishing the supply of xylanase for a subsequent saccharification. Recombinant E. coli metabolized only xylose, while recombinant K. oxytoca M5A1 metabolized xylose, xylobiose, and xylotriose but not xylotetrose. Derivatives of this latter organism produced large amounts of intracellular xylosidase, and the organism is presumed to transport both xylobiose and xylotriose for intracellular hydrolysis. By using recombinant M5A1, approximately 34% of the maximal theoretical yield of ethanol was obtained from xylan by this two-stage process. The yield appeared to be limited by the digestibility of commercial xylan rather than by a lack of sufficient xylanase or by ethanol toxicity. In general form, this two-stage process, which uses a single, genetically engineered microorganism, should be applicable for the production of useful chemicals from a wide range of biomass polymers.  相似文献   

11.
A two-stage process was evaluated for the fermentation of polymeric feedstocks to ethanol by a single, genetically engineered microorganism. The truncated xylanase gene (xynZ) from the thermophilic bacterium Clostridium thermocellum was fused with the N terminus of lacZ to eliminate secretory signals. This hybrid gene was expressed at high levels in ethanologenic strains of Escherichia coli KO11 and Klebsiella oxytoca M5A1(pLOI555). Large amounts of xylanase (25 to 93 mU/mg of cell protein) accumulated as intracellular products during ethanol production. Cells containing xylanase were harvested at the end of fermentation and added to a xylan solution at 60 degrees C, thereby releasing xylanase for saccharification. After cooling, the hydrolysate was fermented to ethanol with the same organism (30 degrees C), thereby replenishing the supply of xylanase for a subsequent saccharification. Recombinant E. coli metabolized only xylose, while recombinant K. oxytoca M5A1 metabolized xylose, xylobiose, and xylotriose but not xylotetrose. Derivatives of this latter organism produced large amounts of intracellular xylosidase, and the organism is presumed to transport both xylobiose and xylotriose for intracellular hydrolysis. By using recombinant M5A1, approximately 34% of the maximal theoretical yield of ethanol was obtained from xylan by this two-stage process. The yield appeared to be limited by the digestibility of commercial xylan rather than by a lack of sufficient xylanase or by ethanol toxicity. In general form, this two-stage process, which uses a single, genetically engineered microorganism, should be applicable for the production of useful chemicals from a wide range of biomass polymers.  相似文献   

12.
Summary Glycerol-fermenting anaerobes were enriched with glycerol at low and high concentrations in order to obtain strains that produce 1,3-propanediol. Six isolates were selected for more detailed characterization; four of them were identified as Citrobacter freundii, one as Klebsiella oxytoca and one as K. pneumoniae. The Citrobacter strains formed 1.3-propanediol and acetate and almost no by-products, while the Klebsiella strains produced varying amounts of ethanol in addition and accordingly less 1,3-propanediol. Enterobacterial strains of the genera Enterobacter, Klebsiella, and Citrobacter from culture collections showed similar product patterns except for one group which formed limited amounts of ethanol, but no propanediol. Seven strains were grown in pH-controlled batch cultures to determine the parameters necessary to evaluate their capacity for 1,3-propanediol production. K. pneumoniae DSM 2026 exhibited the highest final concentration (61 g/l) and the best productivity (1.7 g/l h) whereas C. freundii Zu and K2 achieved only 35 g/l and 1.4 g/l h, respectively. The Citrobacter strains on the other hand gave somewhat better yields which were very close to the theoretical optimum of 65 mol %.Offprint requests to: H. Biebl  相似文献   

13.
14.
pACM1 is a conjugative multiresistance plasmid from Klebsiella oxytoca that encodes SHV-5 extended-spectrum beta-lactamase (ESBL) and has two integrons. The first is a type I (sul type); the second, detected by hybridization with an intI gene probe, has been putatively identified as a defective type I integron. The cassette region of the first integron has now been fully sequenced and contains three aminoglycoside resistance determinants (aac(6')-Ib, aac(3)-Ia, and ant(3")-Ia) and two open reading frames of unknown function. In addition, sequencing of a region downstream from the qacEDelta1-sulI-ORF 5 gene cluster of the first integron revealed a copy of insertion sequence IS6100 flanked by inverted copies of sequence from the 11.2-kb insert (In2) of Tn21. This arrangement is similar to that found in In4 of Tn1696. The coincidence of an ESBL gene and mobile elements on a conjugative plasmid has potential implications for the spread of ESBL-mediated drug resistance, though evidence of bla((SHV-5)) movement mediated by these elements has not been found.  相似文献   

15.
The Waxy (Wx) gene encodes a granule-bound starch synthase (GBSS) that plays a key role in the amylose synthesis of rice and other plant species. Two functional Wx alleles of rice exist: Wx(a), which produces a large amount of amylose, and Wx(b), which produces a smaller amount of amylose because of the mutation at the 5' splice site of intron 1. Wx(b) is largely distributed in Japonica cultivars, and high amylose cultivars do not exist in Japonica cultivars. We introduced the cloned Wx(a) cDNA into null-mutant Japonica rice (wx). The amylose contents of these transgenic plants were 6-11% higher than that of the original cultivar, Labelle, which carries the Wx(a) allele, although the levels of the Wx protein in the transgenic rice were equal to those of cv. Labelle. We also observed a gene-dosage effect of the Wx(a) transgene on Wx protein expression, but a smaller dosage effect was observed in amylose production with over 40% of amylose content in transgenic rice. Moreover, one transgenic line carrying eleven copies of the transgene showed low levels of Wx expression and amylose in the endosperm. This suggested that the integration of excessive copies of the transgene might lead to gene silencing.  相似文献   

16.
Klebsiella aerogenes NCTC 418 was grown anaerobically in chemostat culture with glycerol as source of carbon and energy. Glycerol-limited cultures did not ferment the carbon source with maximal efficiency but produced considerable amounts of 1,3-propanediol. The fraction of glycerol converted to this product depended on the growth rate and on the limitation: faster growing cells produced relatively more of this compound. Under glycerol excess conditions the energetic efficiency of fermentation was decreased due to the high 1,3-propanediol excretion rate. Evidence is presented that 1,3-propanediol accumulation exerts a profound effect on the cells' metabolic behaviour.When steady state glycerol-limited cultures were instantaneously relieved of the growth limitation a vastly enhanced glycerol uptake rate was observed, accompanied by a shift in the fermentation pattern towards 1,3-propanediol and acetate. This observation was consistent with the extremely high glycerol dehydrogenase activity that was measured in vitro. Some mechanisms that could be responsible for the energy dissipation during this response are discussed.  相似文献   

17.
Zhang C  Liu J  Zhang Y  Cai X  Gong P  Zhang J  Wang T  Li H  Ye Z 《Plant cell reports》2011,30(3):389-398
GDP-Mannose 3′,5′-epimerase (GME; EC 5.1.3.18) catalyses the conversion of GDP-d-mannose to GDP-l-galactose, an important step in the ascorbic acid (AsA) biosynthesis pathway in higher plants. In this study, two members of the GME gene family were isolated from tomato (Solanum lycopersicum). Both SlGME genes encode 376 amino acids and share a 92% similarity with each other. Semi-quantitative RT-PCR indicated that SlGME1 was constantly expressed in various tissues, whereas SlGME2 was differentially expressed in different tissues. Transient expression of fused SlGME1-GFP (green fluorescent protein) and SlGME2-GFP in onion cells revealed the cytoplasmic localisation of the two proteins. Transgenic plants over-expressing SlGME1 and SlGME2 exhibited a significant increase in total ascorbic acid in leaves and red fruits compared with wild-type plants. They also showed enhanced stress tolerance based on less chlorophyll content loss and membrane-lipid peroxidation under methyl viologen (paraquat) stress, higher survival rate under cold stress, and significantly higher seed germination rate, fresh weight, and root length under salt stress. The present study demonstrates that the overexpression of two members of the GME gene family resulted in increased ascorbate accumulation in tomato and improved tolerance to abiotic stresses.  相似文献   

18.
In Klebsiella pneumoniae NCIB 418, the pathways normally responsible for aerobic growth on glycerol and sn-glycerol 3-phosphate (the glp system) are superrepressed. However, aerobic growth on glycerol can take place by the intervention of the NAD-linked glycerol dehydrogenase and the ATP-dependent dihydroxyacetone kinase of the dha system normally inducible only anaerobically by glycerol or dihydroxyacetone. Conclusive evidence that the dha system is responsible for both aerobic and anaerobic dissimilation of glycerol was provided by a Tn5 insertion mutant lacking dihydroxyacetone kinase. An enzymatically coupled assay specific for this enzyme was devised. Spontaneous reactivation of the glp system was achieved by selection for aerobic growth on sn-glycerol 3-phosphate or on limiting glycerol as the sole carbon and energy source. However, the expression of this system became constitutive. Aerobic operation of the glp system highly represses synthesis of the dha system enzymes by catabolite repression.  相似文献   

19.
M Murata  M Kobayashi  S Kawanishi 《Biochemistry》1999,38(24):7624-7629
Nitro derivative (nitro-IQ) of a carcinogenic heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is known to be a potent mutagen as well as IQ, and nitro-IQ is believed to be activated enzymatically by nitroreductase. We investigated nonenzymatic reduction of nitro-IQ by an endogenous reductant NADH and the ability of inducing DNA damage by nitro-IQ. Nitro-IQ caused DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine in the presence of NADH and Cu(II). Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited the DNA damage, suggesting the involvement of H2O2 and Cu(I). Nitro-IQ induced DNA cleavage frequently at thymine and cytosine residues in the presence of NADH and Cu(II). UV-vis spectroscopic study showed that no spectral change of Nitro-IQ and NADH was observed in the absence of Cu(II), while rapid spectral change was observed in the presence of Cu(II), suggesting that Cu(II) mediated redox reaction of nitro-IQ and NADH. These results suggest that nitro-IQ can be reduced nonenzymatically by NADH in the presence of Cu(II), and the redox reaction resulted in oxidative DNA damage due to the copper-oxygen complex, derived from the reaction of Cu(I) with H2O2. We conclude that nonenzymatic reduction of nitro-IQ and resulting in oxidative DNA damage can play a role in carcinogenesis of IQ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号