首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-RasQ61L or K-RasG12D) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.  相似文献   

2.
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as ‘BRCAness’. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.  相似文献   

3.
TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18–0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28–0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23–1.36] (p = 0.12) and OR = 0.99 [0.37–2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.  相似文献   

4.
Cancer stem cells have been described in various cancers including squamous tumours of the skin by their ability to reform secondary tumours upon transplantation into immunodeficient mice. Here, we used transplantation of limiting dilution of different populations of FACS‐isolated tumour cells from four distinct mouse models of squamous skin tumours to investigate the frequency of tumour propagating cells (TPCs) at different stages of tumour progression. We found that benign papillomas, despite growing rapidly in vivo and being clonogenic in vitro, reformed secondary tumours upon transplantation at very low frequency and only when tumour cells were co‐transplanted together with tumour‐associated fibroblasts or endothelial cells. In two models of skin squamous cell carcinoma (SCC), TPCs increased with tumour invasiveness. Interestingly, the frequency of TPCs increased in CD34HI but not in CD34LO SCC cells with serial transplantations, while the two populations initially gave rise to secondary tumours with the same frequency. Our results illustrate the progressive increase of squamous skin TPCs with tumour progression and invasiveness and reveal that serial transplantation may be required to define the long‐term renewal potential of TPCs.  相似文献   

5.
Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a KrasG12D;Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. KrasG12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs.  相似文献   

6.
Stoichiometric genome-scale metabolic network models (GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric ratios, other constraints such as enzyme availability and thermodynamic feasibility can also limit the phenotype solution space. Extended GEM models considering either enzymatic or thermodynamic constraints have been shown to improve prediction accuracy. In this paper, we propose a novel method that integrates both enzymatic and thermodynamic constraints in a single Pyomo modeling framework (ETGEMs). We applied this method to construct the EcoETM (E. coli metabolic model with enzymatic and thermodynamic constraints). Using this model, we calculated the optimal pathways for cellular growth and the production of 22 metabolites. When comparing the results with those of iML1515 and models with one of the two constraints, we observed that many thermodynamically unfavorable and/or high enzyme cost pathways were excluded from EcoETM. For example, the synthesis pathway of carbamoyl-phosphate (Cbp) from iML1515 is both thermodynamically unfavorable and enzymatically costly. After introducing the new constraints, the production pathways and yields of several Cbp-derived products (e.g. L-arginine, orotate) calculated using EcoETM were more realistic. The results of this study demonstrate the great application potential of metabolic models with multiple constraints for pathway analysis and phenotype prediction.  相似文献   

7.

Background

Patient-derived tumour xenografts are an attractive model for preclinical testing of anti-cancer drugs. Insights into tumour biology and biomarkers predictive of responses to chemotherapeutic drugs can also be gained from investigating xenograft models. As a first step towards examining the equivalence of epigenetic profiles between xenografts and primary tumours in paediatric leukaemia, we performed genome-scale DNA methylation and gene expression profiling on a panel of 10 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) tumours that were stratified by prednisolone response.

Results

We found high correlations in DNA methylation and gene expression profiles between matching primary and xenograft tumour samples with Pearson’s correlation coefficients ranging between 0.85 and 0.98. In order to demonstrate the potential utility of epigenetic analyses in BCP-ALL xenografts, we identified DNA methylation biomarkers that correlated with prednisolone responsiveness of the original tumour samples. Differential methylation of CAPS2, ARHGAP21, ARX and HOXB6 were confirmed by locus specific analysis. We identified 20 genes showing an inverse relationship between DNA methylation and gene expression in association with prednisolone response. Pathway analysis of these genes implicated apoptosis, cell signalling and cell structure networks in prednisolone responsiveness.

Conclusions

The findings of this study confirm the stability of epigenetic and gene expression profiles of paediatric BCP-ALL propagated in mouse xenograft models. Further, our preliminary investigation of prednisolone sensitivity highlights the utility of mouse xenograft models for preclinical development of novel drug regimens with parallel investigation of underlying gene expression and epigenetic responses associated with novel drug responses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-416) contains supplementary material, which is available to authorized users.  相似文献   

8.
Capecitabine (CAP) is a 5-FU pro-drug approved for the treatment of several cancers and it is used in combination with gemcitabine (GEM) in the treatment of patients with pancreatic adenocarcinoma (PDAC). However, limited pre-clinical data of the effects of CAP in PDAC are available to support the use of the GEMCAP combination in clinic. Therefore, we investigated the pharmacokinetics and the efficacy of CAP as a single agent first and then in combination with GEM to assess the utility of the GEMCAP therapy in clinic. Using a model of spontaneous PDAC occurring in KrasG12D; p53R172H; Pdx1-Cre (KPC) mice and subcutaneous allografts of a KPC PDAC-derived cell line (K8484), we showed that CAP achieved tumour concentrations (∼25 µM) of 5-FU in both models, as a single agent, and induced survival similar to GEM in KPC mice, suggesting similar efficacy. In vitro studies performed in K8484 cells as well as in human pancreatic cell lines showed an additive effect of the GEMCAP combination however, it increased toxicity in vivo and no benefit of a tolerable GEMCAP combination was identified in the allograft model when compared to GEM alone. Our work provides pre-clinical evidence of 5-FU delivery to tumours and anti-tumour efficacy following oral CAP administration that was similar to effects of GEM. Nevertheless, the GEMCAP combination does not improve the therapeutic index compared to GEM alone. These data suggest that CAP could be considered as an alternative to GEM in future, rationally designed, combination treatment strategies for advanced pancreatic cancer.  相似文献   

9.

Background

Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC.

Methods

Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models.

Results

Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours.

Conclusions

Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model.  相似文献   

10.
Over the past 10 years the realisation that genetic mouse models of cancer may play a key role in preclinical drug development has gained strong momentum. Moreover sequencing studies of human tumours have provided key insights into the mutational complexity of epithelial cancer, unleashing important clues for researchers to generate accurate genetically engineered mouse (GEM) models of cancer. Thus by targeting multiple cancer associated human mutations to the appropriate murine epithelia, mice develop tumours that more closely recapitulate the human disease. As a number of excellent models now exist, the next 5-10 years will ascertain whether these models will predict response of human cancer to intervention. If so they might become the 'gold standard' where all drugs are required to be tested in mouse models of disease before proceeding into the patient. However, although this principle is very attractive, it is relatively untested and here, using examples of prevalent human cancers, we will review the latest data on preclinical GEM studies and comment on what challenges are left to overcome.  相似文献   

11.
The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell–matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis. Specific genetic models have provided crucial insights on mechanisms of osteoarthritis (OA), a common adult-onset degenerative condition. Engineered mutants will facilitate interpretation of exome variants identified in isolated birth defects and rare genetic conditions, as well as in genome-wide screens for trait and disease associations. Mammalian forward and reverse genetics, together with genome-wide analysis, together constitute a powerful force for revealing the functions of ADAMTS proteins in physiological pathways and health disorders. Their continuing use, together with genome-editing technology and the ability to generate stem cells from mutants, presents numerous opportunities for advancing basic knowledge, human disease pathways and therapy.  相似文献   

12.
RAC1B is a tumour-related alternative splice isoform of the small GTPase RAC1, found overexpressed in a large number of tumour types. Building evidence suggests it promotes tumour progression but compelling in vivo evidence, demonstrating a role in driving tumour invasion, is currently lacking. In the present study, we have overexpressed RAC1B in a colorectal cancer mouse model with potential invasive properties. Interestingly, RAC1B overexpression did not trigger tumour invasion, rather it led to an acceleration of tumour initiation and reduced mouse survival. By modelling early stages of adenoma initiation we observed a reduced apoptotic rate in RAC1B overexpressing tumours, suggesting protection from apoptosis as a mediator of this phenotype. RAC1B overexpressing tumours displayed attenuated TGFβ signalling and functional analysis in ex vivo organoid cultures demonstrated that RAC1B negatively modulates TGFβ signalling and confers resistance to TGFβ-driven cell death. This work defines a novel mechanism by which early adenoma cells can overcome the cytostatic and cytotoxic effects of TGFβ signalling and characterises a new oncogenic function of RAC1B in vivo.Subject terms: Cancer genetics, Apoptosis  相似文献   

13.
Mutations in the KRAS gene have been shown to play a key role in the pathogenesis of a variety of human tumours. However the mutational spectrum of KRAS gene differs by organ site. In this study, we have analysed the mutational spectrum of KRAS exon 1 in bladder tumours, colorectal cancer (CRC) and chronic myeloid leukemia (CML). A total of 366 patients were included in the present study (234 bladder tumours, 48 CRC and 84 CML). The KRAS mutations are absent in BCR/ABL1 positive CML. This result suggests that BCR/ABL1 fusion gene and KRAS mutations were mutually exclusive. The frequency of KRAS mutations in bladder cancer was estimated at 4.27 %. All of mutations were found in codon 12 and 90 % of them were detected in advanced bladder tumours. However the correlation between KRAS mutations and tumour stage and grade does not report a statistical significant association. The KRAS mutations occur in 35.41 % of patients with CRC. The most frequent mutations were G12C, G12D and G13D. These mutations were significantly correlated with histological differentiation of CRC (p = 0.024). Although the high frequency of KRAS in CRC in comparison to bladder cancer, these two cancers appear to have the same mutational spectrum (p > 0.05).  相似文献   

14.
Epithelial mesenchymal transition (EMT) is a reversible developmental genetic programme of transdifferentiation of polarised epithelial cells to mesenchymal cells. In cancer, EMT is an important factor of tumour cell plasticity and has received increasing attention for its role in the resistance to conventional and targeted therapies. In this paper we provide an overview of EMT in human malignancies, and discuss contribution of EMT to the development of the resistance to Epidermal Growth Factor Receptor (EGFR)-targeted therapies in non-small cell lung cancer (NSCLC). Patients with the tumours bearing specific mutations in EGFR have a good clinical response to selective EGFR inhibitors, but the resistance inevitably develops. Several mechanisms responsible for the resistance include secondary mutations in the EGFR gene, genetic or non-mutational activation of alternative survival pathways, transdifferentiation of NSCLC to the small cell lung cancer histotype, or formation of resistant tumours with mesenchymal characteristics. Mechanistically, application of an EGFR inhibitor does not kill all cancer cells; some cells survive the exposure to a drug, and undergo genetic evolution towards resistance. Here, we present a theory that these quiescent or slow-proliferating drug-tolerant cell populations, or so-called “persisters”, are generated via EMT pathways. We review the EMT-activated mechanisms of cell survival in NSCLC, which include activation of ABC transporters and EMT-associated receptor tyrosine kinase AXL, immune evasion, and epigenetic reprogramming. We propose that therapeutic inhibition of these pathways would eliminate pools of persister cells and prevent or delay cancer recurrence when applied in combination with the agents targeting EGFR.  相似文献   

15.
Patterns of somatic mutations in cancer genes provide information about their functional role in tumourigenesis, and thus indicate their potential for therapeutic exploitation. Yet, the classical distinction between oncogene and tumour suppressor may not always apply. For instance, TP53 has been simultaneously associated with tumour suppressing and promoting activities. Here, we uncover a similar phenomenon for GATA3, a frequently mutated, yet poorly understood, breast cancer gene. We identify two functional classes of frameshift mutations that are associated with distinct expression profiles in tumours, differential disease-free patient survival and gain- and loss-of-function activities in a cell line model. Furthermore, we find an estrogen receptor-independent synthetic lethal interaction between a GATA3 frameshift mutant with an extended C-terminus and the histone methyltransferases G9A and GLP, indicating perturbed epigenetic regulation. Our findings reveal important insights into mutant GATA3 function and breast cancer, provide the first potential therapeutic strategy and suggest that dual tumour suppressive and oncogenic activities are more widespread than previously appreciated.  相似文献   

16.
17.
The presence of a TP53 gene mutation can influence tumour response to some treatments, especially in breast cancer. In this study, we analysed p53 mRNA expression, LOH at 17p13 and TP53 mutations from exons 2 to 11 in 206 patients with breast carcinoma and correlated the results with disease-free and overall survival. The observed mutations were classified according to their type and location in the three protein domains (transactivation domain, DNA binding domain, oligomerization domain) and correlated with disease-free and overall survival. In our population, neither p53 mRNA expression nor LOH correlated with outcome. Concerning TP53 mutations, 27% of tumours were mutated (53/197) and the presence of a mutation in the TP53 gene was associated with worse overall survival (p = 0.0026) but not with disease-free survival (p = 0.0697), with median survival of 80 months and 78 months, respectively. When alterations were segregated into mutation categories and locations, and related to survival, tumours harbouring mutations other than missense mutations in the DNA binding domain of P53 had the same survival profiles as wild-type tumours. Concerning missense mutations in the DNA binding domain, median disease-free and overall survival was 23 months and 35 months, respectively (p = 0.0021 and p<0.0001, respectively), compared with 78 and 80 months in mutated tumours overall. This work shows that disease-free and overall survival in patients with a frameshift mutation of TP53 or missense mutation in the oligomerization domain are the same as those in wild-type TP53 patients.  相似文献   

18.
Tumour mutations corrupt cellular pathways, and accumulate to disrupt, dysregulate, and ultimately avoid mechanisms of cellular control. Yet the very changes that tumour cells undergo to secure their own growth success also render them susceptible to viral infection. Enhanced availability of surface receptors, disruption of antiviral sensing, elevated metabolic activity, disengagement of cell cycle controls, hyperactivation of mitogenic pathways, and apoptotic avoidance all render the malignant cell environment highly supportive to viral replication. The therapeutic use of oncolytic viruses (OVs) with a natural tropism for infecting and subsequently lysing tumour cells is a rapidly progressing area of cancer research. While many OVs exhibit an inherent degree of tropism for transformed cells, this can be further promoted through pharmacological interventions and/or the introduction of viral mutations that generate recombinant oncolytic viruses adapted to successfully replicate only in a malignant cellular environment. Such adaptations that augment OV tumour selectivity are already improving the therapeutic outlook for cancer, and there remains tremendous untapped potential for further innovation.  相似文献   

19.
20.
The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM) models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC) closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1–deficient tumors and development of relevant biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号