共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we found that Met-Arg-Trp (rubimetide), which had been isolated as a hypotensive peptide from a pepsin-pancreatin digest of spinach ribulose bisphosphate carboxylase/oxygenase (Rubisco), has anxiolytic-like activity in the elevated plus-maze test at a dose of 0.1mg/kg (i.p.) or 1.0mg/kg (p.o.) in mice with p<0.01 and p<0.05, respectively. The anxiolytic-like activity of rubimetide (0.1mg/kg, i.p.) was blocked by BW A868C (60microg/kg, i.p.), an antagonist for the DP1 receptor, suggesting the anxiolytic-like activity of rubimetide is mediated by prostaglandin D2 and the DP1 receptor. 相似文献
2.
Miyamoto C Yoshida M Yoshikawa M Mizushige T Ohinata K 《Prostaglandins & other lipid mediators》2012,98(1-2):17-22
We have recently found that central PGD(2) exhibits anxiolytic-like activity. Here we show that complement C5a exhibits anxiolytic-like activity via the PGD(2) system. Centrally administered C5a had anxiolytic-like activity at a dose of 0.3 pmol/mouse in the elevated plus-maze test in mice. C5a-induced anxiolytic-like activity was inhibited by indomethacin, a cyclooxygenase inhibitor, or BWA868C, an antagonist of DP(1) receptor for PGD(2), respectively. The anxiolytic effect of C5a was also blocked by SCH58261 or bicuculline, antagonists of adenosine A(2A) and GABA(A) receptors, respectively, which were activated downstream of PGD(2)-DP(1) receptor. These results suggest that C5a exhibits anxiolytic-like activity via the PGD(2)-DP(1) receptor system coupled to the activation of adenosine A(2A) and GABA(A) receptors. 相似文献
3.
Cyclo-oxygenases (COXs) catalyze the first committed step in the synthesis of the prostaglandins PGE(2), PGD(2), PGF(2alpha), PGI(2) and thomboxane A(2). Expression and enzymatic activity of COX-2, the inducible isoform of COX, are observed in several neurological diseases and result in significant neuronal injury. The neurotoxic effect of COX-2 is believed to occur through downstream effects of its prostaglandin products. In this study, we examined the function of PGD(2) and its two receptors DP1 and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) (DP2) in neuronal survival. PGD(2) is the most abundant prostaglandin in brain and regulates sleep, temperature and nociception. It signals through two distinct G protein-coupled receptors, DP1 and DP2, that have opposing effects on cyclic AMP (cAMP) production. Physiological concentrations of PGD(2) potently and unexpectedly rescued neurons in paradigms of glutamate toxicity in cultured hippocampal neurons and organotypic slices. This effect was mimicked by the DP1-selective agonist BW245C but not by the PGD(2) metabolite 15d-PGJ(2), suggesting that neuroprotection was mediated by the DP1 receptor. Conversely, activation of the DP2 receptor promoted neuronal loss. The protein kinase A inhibitors H89 and KT5720 reversed the protective effect of PGD(2), indicating that PGD(2)-mediated neuroprotection was dependent on cAMP signaling. These studies indicate that activation of the PGD(2) DP1 receptor protects against excitotoxic injury in a cAMP-dependent manner, consistent with recent studies of PGE(2) receptors that also suggest a neuroprotective effect of prostaglandin receptors. Taken together, these data support an emerging and paradoxical neuroprotective role of prostaglandins in the CNS. 相似文献
4.
David Davani Sunil Kumar Thomas Palaia Christopher Hall Louis Ragolia 《Biochemistry and Biophysics Reports》2015
Diabetes is associated with disturbances in the normal levels of both insulin and glucagon, both of which play critical roles in the regulation of glycemia. Recent studies have found lipocalin-type prostaglandin D2 synthase (l-PGDS) to be an emerging target involved in the pathogenesis of type-2 diabetes. This study focused on the effect of l-PGDS on glucagon secretion from cultured pancreatic Alpha TC-1 Clone 6 cells. When cells were treated with various concentrations of l-PGDS (0, 10, 50, and 100 ug/ml) for 2 h in 1 mM glucose; glucagon secretion decreased to 670±45, 838±38, 479±11, and 437±45 pg/ml, respectively. In addition, pancreatic islets were isolated from C57BL/6 mice and stained for prostaglandin D2 receptors, DP1 and DP2, using immunohistochemistry. Our results showed that these islets express only the DP1 receptor. Pancreatic islets were then stained for alpha and beta cells, as well as DP1, to find the primary location of the receptor within the islets using immunofluorescence. Interestingly, DP1 receptor density was found primarily in alpha cells rather than in beta cells. Our study is the first to report a correlation between l-PGDS and glucagon secretion in alpha cells. Based on our obtained results, it can be concluded that higher concentrations of l-PGDS significantly reduced the secretion of glucagon in alpha cells, which may contribute to the pathogenesis of diabetes as well as offer a novel therapeutic site for the treatment of diabetes. 相似文献
5.
We found that centrally administered prostaglandin (PG) E(2) exhibited anxiolytic-like activity in the elevated plus-maze and open field test in mice. Agonists selective for EP(1) and EP(4) receptors, among four receptor subtypes for PGE(2), mimicked the anxiolytic-like activity of PGE(2). The anxiolytic-like activity of PGE(2) was blocked by an EP(1) or EP(4) antagonist, as well as in EP(4) but not EP(1) knockout mice. Central activation of either EP(1) or EP(4) receptors resulted in anxiolytic-like activity. The PGE(2)-induced anxiolytic-like activity was inhibited by antagonists for serotonin 5-HT(1A), dopamine D(1) and GABA(A) receptors. Taken together, PGE(2) exhibits anxiolytic-like activity via EP(1) and EP(4) receptors, with downstream involvement of 5-HT(1A), D(1) and GABA(A) receptor systems. 相似文献
6.
Ohinata K Takagi K Biyajima K Fujiwara Y Fukumoto S Eguchi N Urade Y Asakawa A Fujimiya M Inui A Yoshikawa M 《FEBS letters》2008,582(5):679-684
We found that prostaglandin (PG) D(2), the most abundant PG in the central nervous system, stimulates food intake after intracerebroventricular administration in mice. The orexigenic effect of PGD(2) was mimicked by a selective agonist for the DP(1) receptor among two receptor subtypes for PGD(2), and abolished by its antagonist. Central administration of an antagonist or antisense oligodeoxynucleotide for the DP(1) receptor remarkably decreased food intake, body weight and fat mass. Hypothalamic mRNA levels of lipocalin-type PGD synthase were up-regulated after fasting. The orexigenic activity of PGD(2) was also abolished by an antagonist for neuropeptide Y (NPY) Y(1) receptor. Taken together, PGD(2) may stimulate food intake through central DP(1) receptor coupled to the NPY system. 相似文献
7.
Schratl P Royer JF Kostenis E Ulven T Sturm EM Waldhoer M Hoefler G Schuligoi R Lippe IT Peskar BA Heinemann A 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(7):4792-4799
Prostaglandin (PG) D2 is a major mast cell product that acts via two receptors, the D-type prostanoid (DP) and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) receptors. Whereas CRTH2 mediates the chemotaxis of eosinophils, basophils, and Th2 lymphocytes, the role of DP has remained unclear. We report in this study that, in addition to CRTH2, the DP receptor plays an important role in eosinophil trafficking. First, we investigated the release of eosinophils from bone marrow using the in situ perfused guinea pig hind limb preparation. PGD2 induced the rapid release of eosinophils from bone marrow and this effect was inhibited by either the DP receptor antagonist BWA868c or the CRTH2 receptor antagonist ramatroban. In contrast, BWA868c did not inhibit the release of bone marrow eosinophils when this was induced by the CRTH2-selective agonist 13,14-dihydro-15-keto-PGD2. In additional experiments, we isolated bone marrow eosinophils from the femoral cavity and found that these cells migrated toward PGD2. We also observed that BWA868c inhibited this response to a similar extent as ramatroban. Finally, using immunohistochemistry we could demonstrate that eosinophils in human bone marrow specimens expressed DP and CRTH2 receptors at similar levels. Eosinophils isolated from human peripheral blood likewise expressed DP receptor protein but at lower levels than CRTH2. In agreement with this, the chemotaxis of human peripheral blood eosinophils was inhibited both by BWA868c and ramatroban. These findings suggest that DP receptors comediate with CRTH2 the mobilization of eosinophils from bone marrow and their chemotaxis, which might provide the rationale for DP antagonists in the treatment of allergic disease. 相似文献
8.
Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse 总被引:8,自引:0,他引:8
Spik I Brénuchon C Angéli V Staumont D Fleury S Capron M Trottein F Dombrowicz D 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(6):3703-3708
Allergic pathologies are often associated with IgE production, mast cell activation, and eosinophilia. PGD2 is the major eicosanoid, among several inflammatory mediators, released by mast cells. PGD2 binds to two membrane receptors, D prostanoid receptor (DP)1 and DP2, endowed with antagonistic properties. In humans, DP2 is preferentially expressed on type 2 lymphocytes, eosinophils, and basophils and mediates chemotaxis in vitro. Although not yet supported by in vivo studies, DP2 is thought to be important in the promotion of Th2-related inflammation. Herein, we demonstrate that mouse eosinophils express both DP1 and DP2 and that PGD2 exerts in vitro chemotactic effects on eosinophils through DP2 activation. Furthermore, 13,14-dihydro-15-keto-PGD2, a specific DP2 agonist not only increases eosinophil recruitment at inflammatory sites but also the pathology in two in vivo models of allergic inflammation: atopic dermatitis and allergic asthma. By contrast, DP1 activation tends to ameliorate the pathology in asthma. Taken together, these results support the hypothesis that DP2 might play a critical role in allergic diseases and underline the interest of DP2 antagonists in human therapy. 相似文献
9.
Nantel F Fong C Lamontagne S Wright DH Giaid A Desrosiers M Metters KM O'Neill GP Gervais FG 《Prostaglandins & other lipid mediators》2004,73(1-2):87-101
BACKGROUND: Prostaglandin D2 (PGD2) is released from mast cells during the allergic response. OBJECTIVE: Since PGD2 has been shown to induce nasal congestion in humans, we investigated the distribution of hematopoietic prostaglandin D synthase (PGDS) and the two PGD2 receptors, DP and CRTH2 in human nasal mucosa from healthy subjects and subjects suffering from polyposis, a severe form of chronic rhinosinusitis. METHODS: DP mRNA expression was detected by in situ hybridization while PGDS, CRTH2 and various leukocyte markers expression were revealed by immunohistochemistry. RESULTS: In the normal mucosa, PGDS was only detected in few resident mast cells while CRTH2 was undetectable. In contrast, DP receptor mRNA was detected in epithelial goblet cells, serous glands and in the vasculature. In the nasal mucosa of subjects suffering from polyposis: (1) PGDS was detected in mast cells and other large infiltrating inflammatory cells, (2) both DP mRNA and CRTH2 were detected in eosinophils and (3) CRTH2 was detected on a subset of infiltrating T cells. Although DP mRNA could not be detected in the T cells invading the nasal mucosa, it was found to be expressed in the T cells present in the lymph node and the thymus from normal individuals. CONCLUSION: This study indicates that cells capable of producing PGD2 are present in the nasal mucosa and that both PGD2 receptors, DP and CRTH2, might play a role in inflammatory disease of the upper airways. 相似文献
10.
Brian A. Stearns Christopher Baccei Gretchen Bain Alex Broadhead Ryan C. Clark Heather Coate Jilly F. Evans Patrick Fagan John H. Hutchinson Christopher King Catherine Lee Daniel S. Lorrain Peppi Prasit Pat Prodanovich Angelina Santini Jill M. Scott Nicholas S. Stock Yen P. Truong 《Bioorganic & medicinal chemistry letters》2009,19(16):4647-4651
The synthesis of a series of tricyclic antagonists for the prostaglandin D2 receptor DP2 (CRTH2) is disclosed. The activities of the compounds were evaluated in a human DP2 binding assay and a human whole blood eosinophil shape change assay. Potential metabolic liabilities of the compounds were addressed through in vitro CYP studies. The lead compound was demonstrated to have efficacy in a mouse model of allergic rhinitis following oral dosing. 相似文献
11.
Apelin, the novel identified peptide, is the endogenous ligand for the APJ. Previous studies have reported the effect of apelin on food intake, however the action of acute central injected apelin on food intake in mice remains unknown. The present study was designed to investigate the mechanism as well as the effect of central apelin-13 on food intake in mice. During the dark period, the cumulative food intake was significantly decreased at 4h after the intracerebroventricular (i.c.v.) injection of 1 and 3μg/mouse apelin-13 and the period food intake was significantly reduced during 2-4h after treatment. In the fasted mice, the cumulative food intake was significantly decreased at 2 and 4h after injection of 3μg/mouse apelin-13. The cumulative water intake was significantly reduced by apelin-13 (3μg/mouse) at 4h after injection in freely feeding and fasted mice. However, during light period, apelin-13 had no influence on food and water intake in freely feeding mice. The APJ receptor antagonist apelin-13(F13A) (6μg/mouse) and the corticotrophin-releasing factor (CRF) receptor antagonist α-helical CRF(9-41) (3μg/mouse) could reverse the inhibitory effect on cumulative food intake/0-4h induced by apelin-13 (3μg/mouse) in freely feeding mice during the dark period, whereas the anorexic effect could not be antagonized by the arginie vasopressin (AVP) receptor antagonist deamino(CH(2))(5)Tyr(Me)AVP (0.5μg/mouse). Taken together, these results suggest that central apelin-13 inhibits food intake in mice and it seems that APJ receptor and CRF receptor, but not AVP receptor, might be involved in this process. 相似文献
12.
Norimasa Kanegawa 《FEBS letters》2010,584(3):599-2362
We found that Tyr-Leu (YL) dose-dependently exhibits potent anxiolytic-like activity (0.1-1 mg/kg, i.p.) comparable to diazepam in the elevated plus-maze test in mice. YL was orally active (0.3-3 mg/kg). A retro-sequence peptide or a mixture of Tyr and Leu was inactive. The anxiolytic-like activity of YL was inhibited by antagonists for serotonin 5-HT1A, dopamine D1 and GABAA receptors; however, YL had no affinity for them. We also determined the order of their activation is 5-HT1A, D1 and GABAA receptors using selective agonists and antagonists. Taken together, YL may exhibit anxiolytic-like activity via activation of 5-HT1A, D1 and GABAA receptors. 相似文献
13.
Rapakinin, Arg-Ile-Tyr, is a vasorelaxing, anti-hypertensive and anorexigenic peptide derived from rapeseed napin. In this study, we found that rapakinin intracerebroventricularly administered to mice inhibited the analgesic effect of morphine, evaluated by the tail-pinch test. The anti-opioid activity of rapakinin was blocked by LY225910, an antagonist of the cholecystokinin (CCK) CCK2 receptor, but not by lorglumide, an antagonist of the CCK1 receptor. The anti-opioid activity of rapakinin was also blocked by CAY10441, an antagonist of the prostaglandin (PG) IP receptor. These results suggest that the anti-opioid activity of rapakinin is mediated by the CCK2 and IP receptors. The anti-opioid activity induced by ciprostene, an IP receptor agonist, was blocked by LY225910, while that of CCK-8 was not blocked by CAY10441. Thus, it is demonstrated that the CCK-CCK2 system was activated downstream of the PGI2-IP receptor system. Taken together, rapakinin shows anti-opioid activity via the activation of the PGI2-IP receptor system followed by the CCK-CCK2 receptor system. 相似文献
14.
Takashima Natsuki Ishino Sonoko Oki Keisuke Takafuji Mika Yamagami Takeshi Matsuo Ryotaro Mayanagi Kouta Ishino Yoshizumi 《Extremophiles : life under extreme conditions》2019,23(1):161-172
Extremophiles - DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of... 相似文献
15.
Torisu K Kobayashi K Iwahashi M Nakai Y Onoda T Nagase T Sugimoto I Okada Y Matsumoto R Nanbu F Ohuchida S Nakai H Toda M 《Bioorganic & medicinal chemistry letters》2004,14(19):4891-4895
A series of N-(p-alkoxy)benzoyl-2-methylindole-4-acetic acids were synthesized and evaluated for prostaglandin D(2) (DP) receptor affinity and antagonist activity. Some of them exhibited strong receptor binding and were potent in the cAMP formation assays. These antagonists also suppressed allergic inflammatory responses such as the PGD(2)-induced increase of microvascular permeability. Structure-activity relationship (SAR) data are presented. 相似文献
16.
Scott JM Baccei C Bain G Broadhead A Evans JF Fagan P Hutchinson JH King C Lorrain DS Lee C Prasit P Prodanovich P Santini A Stearns BA 《Bioorganic & medicinal chemistry letters》2011,21(21):6608-6612
Biphenylacetic acid (5) was identified through a library screen as an inhibitor of the prostaglandin D(2) receptor DP2 (CRTH2). Optimization for potency and pharmacokinetic properties led to a series of selective CRTH2 antagonists. Compounds demonstrated potency in a human DP2 binding assay and a human whole blood eosinophil shape change assay, as well as good oral bioavailability in rat and dog, and efficacy in a mouse model of allergic rhinitis following oral dosing. 相似文献
17.
Impaired bone resorption to prostaglandin E2 in prostaglandin E receptor EP4-knockout mice 总被引:7,自引:0,他引:7
Miyaura C Inada M Suzawa T Sugimoto Y Ushikubi F Ichikawa A Narumiya S Suda T 《The Journal of biological chemistry》2000,275(26):19819-19823
Prostaglandin E(2) (PGE(2)) acts as a potent stimulator of bone resorption. In this study, we first clarified in normal ddy mice the involvement of protein kinase A and induction of matrix metalloproteinases (MMPs) in PGE(2)-induced bone resorption, and then identified PGE receptor subtype(s) mediating this PGE(2) action using mice lacking each subtype (EP1, EP2, EP3, and EP4) of PGE receptor. In calvarial culture obtained from normal ddy mice, both PGE(2) and dibutyryl cyclic AMP (Bt(2)cAMP) stimulated bone resorption and induced MMPs including MMP-2 and MMP-13. Addition of an inhibitor of protein kinase A, H89, or an inhibitor of MMPs, BB94, significantly suppressed bone-resorbing activity induced by PGE(2.) In calvarial culture from EP1-, EP2-, and EP3-knockout mice, PGE(2) stimulated bone resorption to an extent similar to that found in calvaria from the wild-type mice. On the other hand, a marked reduction in bone resorption to PGE(2) was found in the calvarial culture from EP4-knockout mice. The impaired bone resorption to PGE(2) was also detected in long bone cultures from EP4-knockout mice. Bt(2)cAMP greatly stimulated bone resorption similarly in both wild-type and EP4-knockout mice. Induction of MMP-2 and MMP-13 by PGE(2) was greatly impaired in calvarial culture from EP4-knockout mice, but Bt(2)cAMP stimulated MMPs induction similarly in the wild-type and EP4-knockout mice. These findings suggest that PGE(2) stimulates bone resorption by a cAMP-dependent mechanism via the EP4 receptor. 相似文献
18.
Iwahashi M Naganawa A Kinoshita A Shimabukuro A Nishiyama T Ogawa S Matsunaga Y Tsukamoto K Okada Y Matsumoto R Nambu F Oumi R Odagaki Y Katagi J Yano K Tani K Nakai H Toda M 《Bioorganic & medicinal chemistry》2011,19(22):6935-6948
To identify an orally available drug candidate, a series of 3-benzoylaminophenylacetic acids were synthesized and evaluated as prostaglandin D(2) (PGD(2)) receptor antagonists. Some of the compounds tested were found to exhibit excellent inhibitory activity against cAMP accumulation in human platelet rich plasma (hPRP), which is one of the indexes of DP antagonism. The optimization process including improvement of the physicochemical properties such as solubility, which may result in an improved pharmacokinetic (PK) profile, is presented. Optimized compounds were studied for their pharmacokinetics and in vivo potential. A structure-activity relationship study is also presented. Some of the test compounds were found to have in vivo efficacy towards the inhibition of PGD(2)-induced and OVA-induced vascular permeability in guinea pig conjunctiva. 相似文献
19.
Nicoll-Griffith DA Seto C Aubin Y Lévesque JF Chauret N Day S Silva JM Trimble LA Truchon JF Berthelette C Lachance N Wang Z Sturino C Braun M Zamboni R Young RN 《Bioorganic & medicinal chemistry letters》2007,17(2):301-304
Metabolites of the potent DP antagonist, MK-0524, were generated using in vitro systems including hepatic microsomes and hepatocytes. Four metabolites (two hydroxylated diastereomers, a ketone and an acyl glucuronide) were characterized by LC-MS/MS and 1H NMR. Larger quantities of these metabolites were prepared by either organic synthesis or biosynthetically to be used as standards in other studies. The propensity for covalent binding was assessed and was found to be acceptable (<50 pmol-equiv/mg protein). 相似文献
20.
Intracerebroventricularly administered angiotensin (Ang) II and III dose-dependently suppressed food intake in mice and their anorexigenic activities were inhibited by AT(2) receptor-selective antagonist. Ang II did not suppress food intake in AT(2) receptor-knockout mice, while it did significantly in wild-type and AT(1) receptor-knockout mice. The suppression of food intake in AT(1) receptor-knockout mice was smaller than that in wild-type. The anorexigenic activities of Ang II and III were also blocked by a selective antagonist for prostaglandin EP(4) receptor. Taken together, centrally administered Ang II and III may decrease food intake through AT(2) receptor with partial involvement of AT(1) receptor, followed by EP(4) receptor activation, which is a novel pathway regulating food intake. 相似文献