首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation sites of lead phosphate reaction product consequent to Na(+)/K(+)-ATPase activity in gill and renal epithelia of the freshwater shrimp Macrobrachium olfersii were located ultracytochemically by para-nitrophenyl-phosphate hydrolysis and lead precipitation, and quantified per unit membrane area and cytoplasmic volume. In shrimps in freshwater (<0.5 per thousand S, 20 mOsm/kg H(2)O, 0.7 mEq Na(+)/liter), numerous sites of electron-dense, Na(+)/K(+)-ATPase reaction product accumulation were demonstrated in the membrane invaginations of the mitochondria-rich, intralamellar septal cells (12.5 +/- 1.7 sites/microm(2) membrane, 179 +/- 22 sites/microm(3) cytoplasm, mean+/- SEM, N 相似文献   

2.
Rainbow trout Oncorhynchus mykiss were exposed to 0, 100, 300 and 800 μgl−1 ambient Cu in brackish water (BW) for 4 days at 13 °C and subsequently transferred to either clean BW, clean fresh water (FW) or clean seawater (SW) at 16 °C. After incubation with 32P-phosphate and 14C-acetate added as precursors to the water the fish showed a degradation, depending on previous [CU], of 32P- and 14C-labelled gill membrane phospholipids if they had been transferred to SW or remained in BW. Corresponding experiments where the fish were exposed to Cu in BW for 12 days showed a similar subsequent degradation in SW and BW of both gill and esophagus membrane phospholipids, however to a much lesser degree in gill tissue than after 4 days. Plasma Na+ was similarly reduced by up to 8%, depending on previous ambient Cu, but in this case only after transfer to FW and only after 4 days of exposure. Both the effect on membrane lipid metabolism and plasma Na+ thus showed acclimation to ambient Cu but there was apparently no direct correlation between the two different types of observed changes in membrane function.  相似文献   

3.
Shore crabsCarcinus maenas were exposed to salinities fluctuating according to the natural tidal rhythm. To this end they were maintained in net cages positioned in the estuarine waters of the river Elbe. The cages were lifted every hour, and between 8–12 specimens were analyzed for hemolymph concentrations of Na, K, Ca, Mg, and osmolality. The results obtained were compared with the respective data measured in external brackish water. In addition, the specific activity of Na−K-ATPase in a posterior gill was determined. Hemolymph Na and Mg as well as branchial Na−K-ATPase were also determined in crabs collected in the North Sea and the Baltic. The results show that inC. maenas living in salinities fluctuating with the tides by approx. 15‰ S, Na, K and Ca were hyperregulated, and Mg was effectively hyporegulated. The concentrations of all hemolymph ions and the activity of the Na−K-ATPase were kept constant over the whole tidal cycle. In Baltic crabs, Na was effectively hyperregulated and gill Na−K-ATPase was significantly elevated by a factor of ca 2 when compared with North Sea crabs. It is suggested that long-term hyperregulation of Na in constant salinities results from an increased number of Na−K-ATPase molecules which may change by synthesis or degradation following salinity stress. Constant hemolymph levels of hyperregulated Na in crabs inhabiting fluctuating brackish water are accomplished by activation of existing Na−K-ATPase by low Na and inhibition by higher ambient concentrations. This work is part of the first author's doctoral thesis submitted to the Department of Biology at the University of Hamburg.  相似文献   

4.
We investigated the effect of salinity on the relationship between Na+-K+-ATPase and sulfogalactosyl ceramide (SGC) in the basolateral membrane of rainbow trout (Oncorhynchus mykiss) gill epithelium. SGC has been implicated as a cofactor in Na+-K+-ATPase activity, especially in Na+-K+-ATPase rich tissues. However, whole-tissue studies have questioned this role in the fish gill. We re-examined SGC cofactor function from a gill basolateral membrane perspective. Nine SGC fatty acid species were quantified by tandem mass spectrometry (MS/MS) and related to Na+-K+-ATPase activity in trout acclimated to freshwater or brackish water (20 ppt). While Na+-K+-ATPase activity increased, the total concentration and relative proportion of SGC isoforms remained constant between salinities. However, we noted a negative correlation between SGC concentration and Na+-K+-ATPase activity in fish exposed to brackish water, whereas no correlation existed in fish acclimated to freshwater. Differential Na+-K+-ATPase/SGC sensitivity is discussed in relation to enzyme isoform switching, the SGC cofactor site model and saltwater adaptation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

5.
The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min?1 mg?1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.  相似文献   

6.
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K0.5 values for Na+ with minor alterations in K0.5 values for K+ and NH4+, causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 µM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.  相似文献   

7.
L-gulono-γ-lactone oxidase (Gulo) catalyzes the last step of ascorbic acid biosynthesis, which occurs in the kidney of elasmobranchs. This study aimed to clone and sequence gulonolactone oxidase (gulo) from the kidney of the euryhaline freshwater stingray, Himantura signifer, and to determine the effects of acclimation from freshwater to brackish water (salinity 20) on its renal gulo mRNA expression and Gulo activity. We also examined the effects of brackish water acclimation on concentrations of ascorbate, dehydroascorbate and ascorbate + dehydroascorbate in the kidney, brain and gill. The complete cDNA coding sequence of gulo from the kidney of H. signifer contained 1323 bp coding for 440 amino acids. The expression of gulo was kidney-specific, and renal gulo expression decreased significantly by 67% and 50% in fish acclimated to brackish water for 1 day and 6 days, respectively. There was also a significant decrease in renal Gulo activity after 6 days of acclimation to brackish water. Hence, brackish water acclimation led to a decrease in the ascorbic acid synthetic capacity in the kidney of H. signifer. However, there were significant increases in concentrations of ascorbate and ascorbate + dehydroascorbate in the gills (after 1 or 6 days), and a significant increase in the concentration of ascorbate and a significant decrease in the concentration of dehydroascorbate in the brain (after 1 day) of fish acclimated to brackish water. Taken together, our results indicate that H. signifer might experience greater salinity-induced oxidative stress in freshwater than in brackish water, possibly related to its short history of freshwater invasion. These results also suggest for the first time a possible relationship between the successful invasion of the freshwater environment by some euryhaline marine elasmobranchs and the ability of these elasmobranchs to increase the capacity of ascorbic acid synthesis in response to hyposalinity stress.  相似文献   

8.
9.
10.
To examine osmotic regulation during long-term acclimation to a hyperosmotic medium, hemolymph osmolality, [Na+] and total protein, tissue hydration, and free amino acid (FAA) pools in abdominal muscle, gills, central nervous tissue and hemolymph were quantified in the diadromous freshwater (FW) shrimp, Macrobrachium olfersii, during direct exposure to 21‰S seawater over a 20-day period. Hemolymph osmolality and [Na+] reach stable maxima within 24?h while total protein is unchanged. Muscle and nerve tissues rapidly lose water while gills hydrate; all tissues attain maximum hydration (+5%) by 5 days, declining to FW values except for gills. Total FAA are highest in muscle, reach a maximum by 2 days (+64%), declining to FW values. Gill FAA increase by 110% after 24?h, diminishing to FW values. Nerve FAA increase 187% within 24?h, and remain elevated. Hemolymph FAA decrease (?75%) after 24?h, stabilizing well below the FW concentration. During acclimation, muscle glycine (+247%), gill taurine (+253%) and proline (+150%), and nerve proline (+426%), glycine (+415%) and alanine (+139%) increase, while hemolymph leucine (?70%) decreases. Total FAA pools contribute 10–20% to intracellular (22–70?mmol/kg) and 0.5–2.4% to hemolymph (3–7?mOsm/kg) osmolalities during direct acclimation from FW. These data emphasize the modest participation of FAA pools in intracellular osmotic regulation during physiological adaptation by M. olfersii to osmotic challenge, accentuating the role of anisosmotic extracellular regulation, suggesting that, during the invasion of freshwater by the Crustacea, dependence on intracellular adjustment employing FAA as osmotic effectors, has become progressively reduced.  相似文献   

11.
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+),K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (≈14?μm2 membrane per μm3cytoplasm), deep invaginations that house the Na(+),K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5?μm2?μm?2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6?μm2?μm?2), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+),K(+)-ATPase specific activity resembles marine crabs but is ≈5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two α-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4) (+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water.  相似文献   

12.
Fertilization and development in salmonids occurs almost exclusively within freshwater environments (< 1 ppt). A less common life history strategy in this group of fishes is the brackish-water resident life history, where entire life cycles occur in brackish water (> 1 ppt). In the present study, we tested the hypothesis that differences in rearing environment (fresh or brackish water) results in significant differences in the ability of lake trout to ionoregulate when faced with a salinity challenge later in life. To test this, genetically similar lake trout were fertilized and raised at either 0 or 5 ppt saltwater. At approximately 240 days post hatch, lake trout from both rearing environments were acutely transferred to 20 ppt salt water or their respective rearing environments as a control. Individuals were sampled at time 0, 1, 7, and 14 days post transfer. Fish raised in 5 ppt transferred to 20 ppt saltwater had significantly higher gill Na+ K+-ATPase activity, gill Na+ K+-ATPase α1b expression, and lower plasma osmolality when compared to freshwater reared lake trout transferred to 20 ppt across various time points. Additionally, the 5 ppt control treatment had greater overall aerobic scope than 0 ppt control fish and those transferred from 0 ppt to 20 ppt. These data imply that populations exhibiting a brackish-water resident life history, as has been observed in Arctic Canada, may have an advantage over freshwater reared conspecifics when foraging in marine influenced environments and colonizing new locations in coastal regions.  相似文献   

13.
Split lamellae of posterior gills of Eriocheir sinensis adapted to fresh water, brackish waters (9 or 18‰) or seawater (36‰) were mounted in Ussing chambers, and transepithelial short-circuit currents and conductances were measured with salines, containing approximately in vivo-like NaCl concentrations. Active sodium and chloride absorption (INa and ICl), the transcellular conductances and the leak conductance were identified with external amiloride and/or DIDS. Split gill lamellae of crabs adapted to fresh water displayed similar magnitudes of INa and ICl with 10 mmol l−1 NaCl in the external medium (internally haemolymph-like NaCl saline). Augmenting external NaCl (50 mmol l−1) resulted in an increase of ICl, whereas INa decreased. Split gill lamellae of crabs adapted to brackish waters (external NaCl of 125 and 225 mmol l−1, respectively) showed lower currents than preparations of freshwater crabs (50 mmol l−1 external NaCl). With split gill lamellae of seawater crabs no currents were detected (450 mmol l−1 NaCl on both sides). The transcellular conductances showed similar changes as the currents. The leak conductance of split gill lamellae of crabs adapted to fresh or brackish waters was low (0.3–0.8 mS cm−2), whereas it was much higher (7 mS cm−2) with preparations of seawater crabs.  相似文献   

14.
  • 1.1. Kidney, oesophagus and gill Na+-K+ ATPase activity and serum Na+, K+ and Cl concentrations are evaluated in European sea bass during experimental acclimation to fresh water.
  • 2.2. Kidney and oesophagus ATPase increase in low salinity and reach a maximum in fresh water.
  • 3.3. Gill ATPase decreases during the acclimation trials and rises again to normal values after a 3-week stay in fresh water.
  • 4.4. Na+ and K+ serum concentrations decrease during the trials and increase back after a 3-week stay in fresh water.
  • 5.5. The correlations between enzymatic activities, serum ion concentrations, morphological changes and environmental salinity are discussed.
  相似文献   

15.
Haemolymph inorganic osmolyte changes and Na,K-ATPase activities in trichobranchiate and epipodite tissues were examined in the spiny lobster Palinurus elephas gradually acclimated from seawater (SW; 38 ppt, salinity; 1291 mOsmol/l) down to dilute seawater (DSW; 20 ppt, salinity; 679 mOsmol/l). During acclimation to DSW haemolymph was only transiently hypoosmotic, becoming isosmotic to the medium over a 24-h period of acclimation. Na,K-ATPase specific activities in homogenates of the trichobranchiate gills from SW- and DSW-acclimated spiny lobsters were in the range of 2-3 μmol Pi/h/mg protein and were not significantly different. It has also been confirmed for the marine stenohaline crustaceans Maja crispata and Dromia personata that gill Na,K-ATPase maintains the same level of specific activity in SW- and DSW-acclimated crabs. The saponin-treated fraction of Na,K-ATPase activity in trichobranchiate gills was 67-89% and epipodites 63-64% over the native homogenates' activity and no differences in enzyme activities upon saponin treatment between SW- and DSW-acclimated spiny lobsters were found. Recovery of 6% and enrichment factor (1.6) of Na,K-ATPase in partially purified plasma membrane fractions of epipodites was relatively low and not different in SW- and DSW-acclimated spiny lobsters. In the hemiepipodite, negative short-circuit current was in the range from -16.7 to -22.7 μA cm(-2) and conductance varied in the range of 205-290 mS cm(-2), values which were not significantly different in spiny lobsters residing in SW or DSW. Very high conductance suggests leakiness of the hemiepipodite epithelium-cuticular complex. In contrast to the group of euryhaline hyperosmoregulating Crustacea in which activation of the specific activity of Na,K-ATPase upon acclimation to dilute seawater occurs, in marine osmoconformers there is no activation of the enzyme in dilute seawater. Based on the literature data and our own results, we have reported a correlation coefficient of 0.65 between specific activity of Na,K-ATPase and the sodium gradient (mmol Na/l; haemolymph-seawater ) between 12 species of osmoconforming and osmoregulating Crustacea. During evolution, hyperosmoregulating Crustacea have achieved internal osmolyte gradients generated by Na,K-ATPase and lowering the gill surface permeability. However these adaptive characteristics are not present in marine osmoconforming Crustacea, restraining them to migrate in the brackish water habitats.  相似文献   

16.
Chalcalburnus tarichi is an anadromous cyprinid fish that has adapted to extreme conditions (salinity 22 ‰, pH 9.8 and alkalinity 153 mEq × l?1) in Lake Van in eastern Turkey. Changes in immunoreactivity of Na+/K+-ATPase in gill tissue and osmolarity and ion levels in plasma were investigated in C. tarichi during reproductive migration. Physicochemical characteristics and ion levels in Lake Van were high compared freshwater. Plasma osmolality and plasma ion concentrations ([Na+], [K+] and [Cl?]) increased after transfer from freshwater to Lake Van. The mitochondria-rich (MR) cells of the gill were stained in both filament and lamellar epithelia of C. tarichi by immunocytochemistry with a specific antiserum for Na+/K+-ATPase in river fish samples. Density and area of MR cells were decreased in lake-adapted fishes. These results indicated that freshwater acclimation capacity is correlated with the size and distribution of MR cells in C. tarichi, in contrast to many teleost fishes.  相似文献   

17.
We examined changes in the expression of Na+/K+-ATPase mRNA in the gills of the cinnamon clownfish using quantitative real-time PCR in an osmotically changing environment [seawater (35 psu; practical salinity unit, 1 psu ≈ 1‰) → brackish water (17.5 psu) and brackish water with prolactin]. The expression of Na+/K+-ATPase mRNA in gills was increased after the transfer to brackish water, and the expression was repressed by prolactin treatment. Also, activities of gill Na+/K+-ATPase and plasma cortisol levels increased after the transfer to brackish water and were repressed in brackish water with prolactin treatment. Na+/K+-ATPase-immunoreactive cells were almost consistently observed in the gill filaments, but absent from the lamella epithelia. The plasma osmolality level decreased in brackish water, but the level of this parameter increased in brackish water with prolactin treatment during salinity change. These results suggest that the Na+/K+-ATPase gene plays an important role in osmoregulation in gills, and prolactin improves the hyperosmoregulatory ability of cinnamon clownfish in a brackish water (hypoosmotic) environment.  相似文献   

18.
The previously reported class of potent inorganic inhibitors of Na,K-ATPase, named MCS factors, was shown to inhibit not only Na,K-ATPase but several P-type ATPases with high potency in the sub-micromolar range. These MCS factors were found to bind to the intracellular side of the Na, K-ATPase. The inhibition is not competitive with ouabain binding, thus excluding its role as cardiac-steroid-like inhibitor of the Na,K-ATPase. The mechanism of inhibition of Na,K-ATPase was investigated with the fluorescent styryl dye RH421, a dye known to report changes of local electric fields in the membrane dielectric. MCS factors interact with the Na,K-ATPase in the E1 conformation of the ion pump and induce a conformational rearrangement that causes a change of the equilibrium dissociation constant for one of the first two intracellular cation binding sites. The MCS-inhibited state was found to have bound one cation (H+, Na+ or K+) in one of the two unspecific binding sites, and at high Na+ concentrations another Na+ ion was bound to the highly Na+-selective ion-binding site.  相似文献   

19.
Function of FXYD Proteins,Regulators of Na,K-ATPase   总被引:3,自引:0,他引:3  
In this short review, we summarize our work on the role of members of the FXYD protein family as tissue-specific modulators of Na, K-ATPase. FXYD1 or phospholemman, mainly expressed in heart and skeletal muscle increases the apparent affinity for intracellular Na+ of Na, K-ATPase and may thus be important for appropriate muscle contractility. FXYD2 or γ subunit and FXYD4 or CHIF modulate the apparent affinity for Na+ of Na, K-ATPase in an opposite way, adapted to the physiological needs of Na+ reabsorption in different segments of the renal tubule. FXYD3 expressed in stomach, colon, and numerous tumors also modulates the transport properties of Na, K-ATPase but it has a lower specificity of association than other FXYD proteins and an unusual membrane topology. Finally, FXYD7 is exclusively expressed in the brain and decreases the apparent affinity for extracellular K+, which may be essential for proper neuronal excitability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号