首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious diseases, we investigated its role during the infection with T. cruzi.

Methodology/Principal Findings

First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4+, CD8+ and NK cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization resulted in increased production of IL-12, IFN-γ and TNF-α and enhanced specific type 1 chemokine and chemokine receptors expression. Moreover, the results showed that IL-17 regulates T-bet, RORγt and STAT-3 expression in the heart, showing that IL-17 controls the differentiation of Th1 cells in infected mice.

Conclusion/Significance

These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of alternative therapies for the control of chronic morbidity of chagasic patients.  相似文献   

2.
3.
Signal transduction events triggered in mammalian host cells by the obligate intracellular parasite Trypanosoma cruzi are required for invasion. Infective T. cruzi trypomastigotes elicit Ca2+ signaling in mammalian host cells and activate transforming growth factor-beta receptor signaling pathways. The elevation of Ca2+ in T. cruzi, induced by host-cell contact, is also required for invasion, extending the concept of host-pathogen 'cross-talk' to invasive protozoan pathogens.  相似文献   

4.
Various cell types in both lymphoid and non-lymphoid tissues produce the anti-inflammatory cytokine interleukin (IL)-10 during murine cytomegalovirus (MCMV) infection. The functions of IL-10 in the liver during acute infection and the cells that generate this cytokine at this site have not been extensively investigated. In this study, we demonstrate that the production of IL-10 in the liver is elevated in C57BL/6 mice during late acute MCMV infection. Using IL-10 green fluorescence protein (GFP) reporter knock-in mice, designated IL-10-internal ribosomal entry site (IRES)-GFP-enhanced reporter (tiger), NK cells are identified as major IL-10 expressing cells in the liver after infection, along with T cells and other leukocytes. In the absence of IL-10, mice exhibit marked elevations in proinflammatory cytokines and in the numbers of mononuclear cells and lymphocytes infiltrating the liver during this infection. IL-10-deficiency also enhances liver injury without improving viral clearance from this site. Collectively, the results indicate that IL-10-producing cells in the liver provide protection from collateral injury by modulating the inflammatory response associated with MCMV infection.  相似文献   

5.
6.
The insect Rhodnius prolixus is responsible for the transmission of Trypanosoma cruzi, which is the etiological agent of Chagas disease in areas of Central and South America. Besides this, it can be infected by other trypanosomes such as Trypanosoma rangeli. The effects of these parasites on vectors are poorly understood and are often controversial so here we focussed on possible negative effects of these parasites on the reproductive performance of R. prolixus, specifically comparing infected and uninfected couples. While T. cruzi infection did not delay pre-oviposition time of infected couples at either temperature tested (25 and 30°C) it did, at 25°C, increase the e-value in the second reproductive cycle, as well as hatching rates. Meanwhile, at 30°C, T. cruzi infection decreased the e-value of insects during the first cycle and also the fertility of older insects. When couples were instead infected with T. rangeli, pre-oviposition time was delayed, while reductions in the e-value and hatching rate were observed in the second and third cycles. We conclude that both T. cruzi and T. rangeli can impair reproductive performance of R. prolixus, although for T. cruzi, this is dependent on rearing temperature and insect age. We discuss these reproductive costs in terms of potential consequences on triatomine behavior and survival.  相似文献   

7.
In murine infection with Trypanosoma cruzi, immune responsiveness to parasite and non-parasite Ag becomes suppressed during the acute phase of infection, and this suppression is known to extend to the production of IL-2. To determine whether suppression of lymphokine production was specific for IL-2, or was a generalized phenomenon involving suppressed production of other lymphokines, we have begun an investigation of the ability of mice to produce of a number of lymphokines during infection, initially addressing this question by studying IFN-gamma production. Supernatants from Con A-stimulated spleen cells from infected resistant (C57B1/6) and susceptible (C3H) mice were assayed for IFN-gamma. Supernatants known to be suppressed with respect to IL-2 production from both mouse strains contained IFN-gamma at or above that of supernatants from normal spleen cells. Samples were assayed in an IFN bioassay to ensure that the IFN-gamma detected by ELISA was biologically active. Thus, suppression during T. cruzi infection does not extend to the production of all lymphokines. The stimulation of IFN-gamma production was confirmed by detection of IFN-gamma mRNA in unstimulated spleen cells from infected animals, and in Con A, Con A + PMA, and in some cases, parasite Ag-stimulated spleen cells from infected animals. IFN-gamma mRNA levels in mitogen-stimulated spleen cells equalled or exceeded those found in similarly stimulated normal cells. In contrast, stimulated spleen cells from infected animals had reduced levels of IL-2 mRNA relative to normal spleen cells. Thus at both the protein and mRNA level, IFN-gamma production is stimulated by T. cruzi infection, whereas IL-2 production is suppressed. Serum IFN-gamma in infected C57B1/6 and C3H mice was detected 8 days after infection, peaked on day 20 of infection, and subsequently fell, but remained detectable at low levels throughout the life of infected mice. Infected animals were depleted of cell populations known to be capable of producing IFN-gamma, and Thy-1+, CD4-, CD8-, NK- cells, and to a lesser degree, CD4+ and CD8+ cells were found to be responsible for the production of IFN-gamma during infection. We also report that IL-2 can induce IFN-gamma production in vitro and in vivo by spleen cells from infected animals, and that IL-2 can synergize with epimastigote or trypomastigote antigen to produce high levels of IFN-gamma comparable to those found in supernatants from mitogen-stimulated cells.  相似文献   

8.
9.
10.
11.
小胶质细胞是中枢神经系统中重要免疫细胞,也是炎症反应中的主要效应细胞。芍药苷被证实能有效抑制炎症反应,在调节免疫方面具有巨大药用价值。本文旨在阐明BV2细胞炎症反应中芍药苷对细胞炎症及吞噬的抑制作用,并探索其中潜在机制。体外实验利用脂多糖(lipopolysaccharide,LPS)诱导BV2细胞发生炎症反应,芍药苷能有效抑制BV2细胞TNF-α和NO的产生以及BV2细胞异常增加的吞噬功能,并且在此过程中IL-10-STAT3信号通路被激活;芍药苷的抑制作用在我们使用STAT3抑制剂JSI-124后显著降低,TNF-α和NO的表达量增加、BV2细胞的吞噬功能增强。上述结果表明,芍药苷能有效抑制BV2细胞炎症作用及吞噬作用,这一过程中依赖IL-10-STAT3信号通路的激活。这将加深我们对芍药苷抑制小胶质细胞炎症作用机制的认识。  相似文献   

12.
Inflammation plays an important role in the pathophysiology of Chagas disease, caused by Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the expression of enzymes involved in AA metabolism during T. cruzi infection. Our results show an increase in the expression of several of these enzymes in acute T. cruzi infected heart. Interestingly, COX-2 was expressed by CD68+ myeloid heart-infiltrating cells. In addition, infiltrating myeloid CD11b+Ly6G- cells purified from infected heart tissue express COX-2 and produce prostaglandin E2 (PGE2) ex vivo. T. cruzi infections in COX-2 or PGE2-dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2 signaling contribute significantly to the heart leukocyte infiltration and to the release of chemokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion, COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2 as a potential target for immune intervention.  相似文献   

13.
14.
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. While it is well-accepted that inflammation is central to NAFLD pathogenesis, the immune pathway(s) orchestrating disease progression are poorly defined. Notably, IL-17RA signaling, via IL-17A, plays an important role in obesity-driven NAFLD pathogenesis. However, the role of the IL-17F, another IL-17RA ligand, in NAFLD pathogenesis has not been examined. Further, the cell types expressing IL-17RA and producing IL-17RA ligands in the pathogenesis of NAFLD have not been defined. Here, IL-17RA-/-, IL-17A-/-, IL-17F-/- and wild-type (WT) mice were fed either standard chow diet or methionine and choline deficient diet (MCDD)—a diet known to induce steatosis and hepatic inflammation through beta-oxidation dysfunction—and hepatic inflammation and NAFLD progression were subsequently quantified. MCDD feeding augmented hepatic IL-17RA expression and significantly increased hepatic infiltration of macrophages and IL-17A and IL-17F producing CD4+ and CD8+ T cells in WT mice. In contrast, IL-17RA-/-, IL-17A-/-, and IL-17F-/- mice, despite increased steatosis, exhibited significant protection from hepatocellular damage compared to WT controls. Protection from hepatocellular damage correlated with decreased levels of hepatic T-cell and macrophage infiltration and decreased expression of inflammatory mediators associated with NAFLD. In sum, our results indicate that the IL-17 axis also plays a role in a MCDD-induced model of NAFLD pathogenesis. Further, we show for the first time that IL-17F, and not only IL-17A, plays an important role in NAFLD driven inflammation.  相似文献   

15.

Background

Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection.

Methodology and Principal Findings

Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1 -/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain.

Conclusion/Significance

Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions.  相似文献   

16.
During chronic infection with Mycobacterium tuberculosis (Mtb), bacilli multiplication is constrained within lung granulomas until excessive inflammation destroys the lung. Neutrophils are recruited early and participate in granuloma formation, but excessive neutrophilia exacerbates the tuberculosis disease. Neutrophils thus appear as potential targets for therapeutic interventions, especially in patients for whom no antibiotic treatment is possible. Signals that regulate neutrophil recruitment to the lung during mycobacterial infection need to be better understood. We demonstrated here, in the mouse model, that neutrophils were recruited to the lung in two waves after intranasal infection with virulent Mtb or the live attenuated vaccine strain Bacillus Calmette Guérin (BCG). A first wave of neutrophils was swiftly recruited, followed by a subsequent adaptive wave that reached the lung together with IFN-γ- and IL-17A-producing T cells. Interestingly, the second neutrophil wave did not participate to mycobacteria control in the lung and established contacts with T cells. The adaptive wave was critically dependent on the expression of IL-17RA, the receptor for IL-17A, expressed in non-hematopoietic cells. In absence of this receptor, curtailed CXCL-1 and 5 production in the lung restrained neutrophil recruitment. CXCL-1 and 5 instillation reconstituted lung neutrophil recruitment in BCG-infected IL17RA-/- mice.  相似文献   

17.
18.

Background

The immune mechanisms underlying experimental non-alcoholic steatohepatitis (NASH), and more interestingly, the effect of T. cruzi chronic infection on the pathogenesis of this metabolic disorder are not completely understood.

Methodology/Principal Findings

We evaluated immunological parameters in male C57BL/6 wild type and TLR4 deficient mice fed with a standard, low fat diet, LFD (3% fat) as control group, or a medium fat diet, MFD (14% fat) in order to induce NASH, or mice infected intraperitoneally with 100 blood-derived trypomastigotes of Tulahuen strain and also fed with LFD (I+LFD) or MFD (I+MFD) for 24 weeks. We demonstrated that MFD by itself was able to induce NASH in WT mice and that parasitic infection induced marked metabolic changes with reduction of body weight and steatosis revealed by histological studies. The I+MFD group also improved insulin resistance, demonstrated by homeostasis model assessment of insulin resistance (HOMA-IR) analysis; although parasitic infection increased the triglycerides and cholesterol plasma levels. In addition, hepatic M1 inflammatory macrophages and cytotoxic T cells showed intracellular inflammatory cytokines which were associated with high levels of IL6, IFNγ and IL17 plasmatic cytokines and CCL2 chemokine. These findings correlated with an increase in hepatic parasite load in I+MFD group demonstrated by qPCR assays. The recruitment of hepatic B lymphocytes, NK and dendritic cells was enhanced by MFD, and it was intensified by parasitic infection. These results were TLR4 signaling dependent. Flow cytometry and confocal microscopy analysis demonstrated that the reactive oxygen species and peroxinitrites produced by liver inflammatory leukocytes of MFD group were also exacerbated by parasitic infection in our NASH model.

Conclusions

We highlight that a medium fat diet by itself is able to induce steatohepatitis. Our results also suggest a synergic effect between damage associated with molecular patterns generated during NASH and parasitic infection, revealing an intense cross-talk between metabolically active tissues, such as the liver, and the immune system. Thus, T. cruzi infection must be considered as an additional risk factor since exacerbates the inflammation and accelerates the development of hepatic injury.  相似文献   

19.
Chagas disease, caused by Trypanosoma cruzi (Tc), is an important cause of heart disease. Resistance to Tc infection is multifactorial and associated with Th1 response. IL-18 plays an important role in regulation of IFN-γ production/development of Th1 response. However, the role of IL-18 in the setting of Tc infection remains unclear. Therefore, we investigated the role of IL-18 in the modulation of immune response and myocarditis in Tc infection. C57BL/6 and IL-18 KO mice were infected with Tc (Y or Colombian strain) and parasitemia, immune response and pathology were evaluated. Y strain infection of IL-18 KO did not alter any parameters when compared with C57BL/6 mice. However, during the acute phase (20 and 40 days post infection-dpi), Colombian strain infected-IL-18 KO mice displayed higher serum levels of IL-12 and IFN-γ, respectively, and at the chronic phase (100 dpi) an increase in splenic IFN-γ-producing CD4+ and CD8+ T memory cells. There was an IL-10, FOXP3 and CD4+CD25+ cells reduction during acute infection in spleen. Additionally, there was a significant reduction in leukocyte infiltration and parasite load in myocardium of chronically infected IL-18 KO mice. Collectively, these data indicate that IL-18 contributes to the pathogenesis of Tc-induced myocarditis when infected with Colombian but not Y strain. These observations also underscore that parasite and host strain differences are important in evaluation of experimental Tc infection pathogenesis.  相似文献   

20.
Chagas' disease is a zoonosis prevalent in Latin America that is caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas' disease, has been extensively studied but is still poorly understood. In this study, we systematically compared clinical, microbiologic, pathologic, immunologic, and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice; however, most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold greater than C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8(+) T cells and both CD4(+) and CD8(+) subsets of IFN-γ(+)IL-10(+) double-producing T cells. Furthermore, T. cruzi infection of IL-10(-/-) C57BL/6J mice phenocopied fatal infection in wild-type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system, IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号