首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.  相似文献   

2.
Structural birth defect (SBD) is a major cause of morbidity and mortality in the newborn period. Although the etiology of SBD is diverse, a wide spectrum of SBD associated with ciliopathies points to the cilium as having a central role in the pathogenesis of SBDs. Ciliopathies are human diseases arising from disruption of cilia structure and/or function. They are associated with developmental anomalies in one or more organ systems and can involve defects in motile cilia, such as those in the airway epithelia or from defects in nonmotile (primary cilia) that have sensory and cell signaling function. Availability of low cost next generation sequencing has allowed for explosion of new knowledge in genetic etiology of ciliopathies. This has led to the appreciation that many genes are shared in common between otherwise clinically distinct ciliopathies. Further insights into the relevance of the cilium in SBD has come from recovery of pathogenic mutations in cilia‐related genes from many large‐scale mouse forward genetic screens with differing developmental phenotyping focus. Our mouse mutagenesis screen for congenital heart disease (CHD) using noninvasive fetal echocardiography has yielded a marked enrichment for pathogenic mutations in genes required for motile or primary cilia function. These novel mutant mouse models will be invaluable for modeling human ciliopathies and further interrogating the role of the cilium in the pathogenesis of SBD and CHD. Overall, these findings suggest a central role for the cilium in the pathogenesis of a wide spectrum of developmental anomalies associated with CHD and SBDs. Birth Defects Research (Part C) 102:115–125, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
In the last 10 years, the primary cilia machinery has been implicated in more than a dozen disorders united as ciliopathies, including skeletal dysplasias, such as Jeune syndrome and short rib-polydactyly type III. Indeed, primary cilia play a vital role in transduction of signals in the hedgehog pathway that is especially important in skeletal development. In this review, we focus on skeletal conditions belonging to the ciliopathy group: the short rib-polydactyly group (SRPs) that includes Verma-Naumoff syndrome (SRP type III), Majewski syndrome (SRP type II), Jeune syndrome (ATD), as well as Ellis-van Creveld syndrome (EVC), the Sensenbrenner syndrome, and, finally, Weyers acrofacial dysostosis. Today, 10 different genes have been identified as responsible for seven "skeletal" ciliopathies. Mutations have been identified in dynein motor (DYNC2H1), in intraflagellar transport (IFT) complexes (IFT80, IFT122, IFT43, WDR35, WDR19, and TTC21B) as well as in genes responsible for the basal body (NEK1, EVC, and EVC2). The wide clinical variability observed for an individual ciliopathy gene supports the development of exome strategy specifically dedicated to cilia genes to identify mutations in this particularly heterogeneous group of disorders.  相似文献   

4.
Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654]  相似文献   

5.
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.  相似文献   

6.
In humans, ciliary dysfunction causes ciliopathies, which present as multiple organ defects, including developmental and sensory abnormalities. Sdccag8 is a centrosomal/basal body protein essential for proper cilia formation. Gene mutations in SDCCAG8 have been found in patients with ciliopathies manifesting a broad spectrum of symptoms, including hypogonadism. Among these mutations, several that are predicted to truncate the SDCCAG8 carboxyl (C) terminus are also associated with such symptoms; however, the underlying mechanisms are poorly understood. In the present study, we identified the Sdccag8 C-terminal region (Sdccag8-C) as a module that interacts with the ciliopathy proteins, Ick/Cilk1 and Mak, which were shown to be essential for the regulation of ciliary protein trafficking and cilia length in mammals in our previous studies. We found that Sdccag8-C is essential for Sdccag8 localization to centrosomes and cilia formation in cultured cells. We then generated a mouse mutant in which Sdccag8-C was truncated (Sdccag8ΔC/ΔC mice) using a CRISPR-mediated stop codon knock-in strategy. In Sdccag8ΔC/ΔC mice, we observed abnormalities in cilia formation and ciliopathy-like organ phenotypes, including cleft palate, polydactyly, retinal degeneration, and cystic kidney, which partially overlapped with those previously observed in Ick- and Mak-deficient mice. Furthermore, Sdccag8ΔC/ΔC mice exhibited a defect in spermatogenesis, which was a previously uncharacterized phenotype of Sdccag8 dysfunction. Together, these results shed light on the molecular and pathological mechanisms underlying ciliopathies observed in patients with SDCCAG8 mutations and may advance our understanding of protein–protein interaction networks involved in cilia development.  相似文献   

7.
Bardet–Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBS‐induced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems.  相似文献   

8.
Primary cilia are ubiquitous cellular antennae whose dysfunction collectively causes various disorders, including vision and hearing impairment, as well as renal, skeletal, and central nervous system anomalies. One ciliopathy, Alström syndrome, is closely related to Bardet–Biedl syndrome (BBS), sharing amongst other phenotypic features morbid obesity. As the cellular and molecular links between weight regulation and cilia are poorly understood, we used the obese mouse strain foz/foz, bearing a truncating mutation in the Alström syndrome protein (Alms1), to help elucidate why it develops hyperphagia, leading to early onset obesity and metabolic anomalies. Our in vivo studies reveal that Alms1 localizes at the base of cilia in hypothalamic neurons, which are implicated in the control of satiety. Alms1 is lost from this location in foz/foz mice, coinciding with a strong postnatal reduction (~70%) in neurons displaying cilia marked with adenylyl cyclase 3 (AC3), a signaling protein implicated in obesity. Notably, the reduction in AC3‐bearing cilia parallels the decrease in cilia containing two appetite‐regulating proteins, Mchr1 and Sstr3, as well as another established Arl13b ciliary marker, consistent with progressive loss of cilia during development. Together, our results suggest that Alms1 maintains the function of neuronal cilia implicated in weight regulation by influencing the maintenance and/or stability of the organelle. Given that Mchr1 and Sstr3 localization to remaining cilia is maintained in foz/foz animals but known to be lost from BBS knockout mice, our findings suggest different molecular etiologies for the satiety defects associated with the Alström syndrome and BBS ciliopathies. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

9.
The cell biological basis of ciliary disease   总被引:6,自引:0,他引:6  
Defects in cilia cause a broad spectrum of human diseases known collectively as the ciliopathies. Although all ciliopathies arise from defective cilia, the range of symptoms can vary significantly, and only a small subset of the possible ciliary disease symptoms may be present in any given syndrome. This complexity is puzzling until one realizes that the cilia are themselves exceedingly complex machines that perform multiple functions simultaneously, such that breaking one piece of the machine can leave some functions intact while destroying others. The clinical complexity of the ciliopathies can therefore only be understood in light of the basic cell biology of the cilia themselves, which I will discuss from the viewpoint of cell biological studies in model organisms.  相似文献   

10.
Cilia are microtubule-based organelles with important functions in motility and sensation. They contribute to a broad spectrum of developmental disorders called ciliopathies and have recently been linked to common conditions such as cancers and congenital heart disease. There has been increasing interest in the biology of cilia and their contribution to disease over the past two decades. In 2013 we published a “Gold Standard” list of genes confirmed to be associated with cilia. This was published as part of the SYSCILIA consortium for systems biology study dissecting the contribution of cilia to human health and disease, and was named the Syscilia Gold Standard (SCGS). Since this publication, interest in cilia and understanding of their functions have continued to grow, and we now present an updated SCGS version 2. This includes an additional 383 genes, more than doubling the size of SCGSv1. We use this dataset to conduct a review of advances in understanding of cilia biology 2013– 2021 and offer perspectives on the future of cilia research. We hope that this continues to be a useful resource for the cilia community.  相似文献   

11.
Primary cilia are essential sensory and signaling organelles present on nearly every mammalian cell type. Defects in primary cilia underlie a class of human diseases collectively termed ciliopathies. Primary cilia are restricted subcellular compartments, and specialized mechanisms coordinate the localization of proteins to cilia. Moreover, trafficking of proteins into and out of cilia is required for proper ciliary function, and this process is disrupted in ciliopathies. The somatostatin receptor subtype 3 (Sstr3) is selectively targeted to primary cilia on neurons in the mammalian brain and is implicated in learning and memory. Here, we show that Sstr3 localization to cilia is dynamic and decreases in response to somatostatin treatment. We further show that somatostatin treatment stimulates β-arrestin recruitment into Sstr3-positive cilia and this recruitment can be blocked by mutations in Sstr3 that impact agonist binding or phosphorylation. Importantly, somatostatin treatment fails to decrease Sstr3 ciliary localization in neurons lacking β-arrestin 2. Together, our results implicate β-arrestin in the modulation of Sstr3 ciliary localization and further suggest a role for β-arrestin in the mediation of Sstr3 ciliary signaling.  相似文献   

12.
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.  相似文献   

13.
《Organogenesis》2013,9(2):177-185
Sonic hedgehog plays an essential role in maintaining hepatoblasts in a proliferative non-differentiating state during embryogenesis. Transduction of the Hedgehog signaling pathway is dependent on the presence of functional primary cilia and hepatoblasts, therefore, must require primary cilia for normal function. In congenital syndromes in which cilia are absent or non-functional (ciliopathies) hepatorenal fibrocystic disease is common and primarily characterized by ductal plate malformations which underlie the formation of liver cysts, as well as less commonly, by hepatic fibrosis, although a role for abnormal Hedgehog signal transduction has not been implicated in these phenotypes. We have examined liver, lung and rib development in the talpid3 chicken mutant, a ciliopathy model in which abnormal Hedgehog signaling is well characterized. We find that the talpid3 phenotype closely models that of human short-rib polydactyly syndromes which are caused by the loss of cilia, and exhibit hypoplastic lungs and liver failure. Through an analysis of liver and lung development in the talpid3 chicken, we propose that cilia in the liver are essential for the transduction of Hedgehog signaling during hepatic development. The talpid3 chicken represents a useful resource in furthering our understanding of the pathology of ciliopathies beyond the treatment of thoracic insufficiency as well as generating insights into the role Hedgehog signaling in hepatic development.  相似文献   

14.
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.  相似文献   

15.
《Organogenesis》2013,9(1):96-107
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.  相似文献   

16.
Sonic hedgehog plays an essential role in maintaining hepatoblasts in a proliferative non-differentiating state during embryogenesis. Transduction of the Hedgehog signaling pathway is dependent on the presence of functional primary cilia and hepatoblasts, therefore, must require primary cilia for normal function. In congenital syndromes in which cilia are absent or non-functional (ciliopathies) hepatorenal fibrocystic disease is common and primarily characterized by ductal plate malformations which underlie the formation of liver cysts, as well as less commonly, by hepatic fibrosis, although a role for abnormal Hedgehog signal transduction has not been implicated in these phenotypes. We have examined liver, lung and rib development in the talpid3 chicken mutant, a ciliopathy model in which abnormal Hedgehog signaling is well characterized. We find that the talpid3 phenotype closely models that of human short-rib polydactyly syndromes which are caused by the loss of cilia, and exhibit hypoplastic lungs and liver failure. Through an analysis of liver and lung development in the talpid3 chicken, we propose that cilia in the liver are essential for the transduction of Hedgehog signaling during hepatic development. The talpid3 chicken represents a useful resource in furthering our understanding of the pathology of ciliopathies beyond the treatment of thoracic insufficiency as well as generating insights into the role Hedgehog signaling in hepatic development.  相似文献   

17.
The primary cilia are microtubule-based organelles that protrude from most of the eukaryotic cells. Recognized as the cell's antenna, primary cilium functions as a signaling hub for many physiologically and developmentally important signaling cascades. Ciliary dysfunction causes a wide spectrum of syndromic human genetic diseases collectively termed “ciliopathies”. Mounting evidences have shown that various small GTPases have been implicated in the context of cilia as well as human ciliopathies. However, how these small GTPases affect cilia formation and function remains poorly understood. Here we review and discuss the ciliary role of three Arf-like small GTPases (Arls), Arl3, Arl6, and Arl13b.  相似文献   

18.
Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Cby1, the mammalian orthologue of the Drosophila Chibby protein, localizes to mature centrioles, is important for ciliogenesis in multiciliated airway epithelia in mice, and antagonizes canonical Wnt signaling via direct regulation of β-catenin. We report that deletion of the mouse Cby1 gene results in cystic kidneys, a phenotype common to ciliopathies, and that Cby1 facilitates the formation of primary cilia and ciliary recruitment of the Joubert syndrome protein Arl13b. Localization of Cby1 to the distal end of mature centrioles depends on the centriole protein Ofd1. Superresolution microscopy using both three-dimensional SIM and STED reveals that Cby1 localizes to an ∼250-nm ring at the distal end of the mature centriole, in close proximity to Ofd1 and Ahi1, a component of the transition zone between centriole and cilium. The amount of centriole-localized Ahi1, but not Ofd1, is reduced in Cby1−/− cells. This suggests that Cby1 is required for efficient recruitment of Ahi1, providing a possible molecular mechanism for the ciliogenesis defect in Cby1−/− cells.  相似文献   

19.
Using RNAi screening, proteomics, cell biological and mouse genetics approaches, we have identified a complex of nine proteins, seven of which are disrupted in human ciliopathies. A transmembrane component, TMEM231, localizes to the basal body before and independently of intraflagellar transport in a Septin 2 (Sept2)-regulated fashion. The localizations of TMEM231, B9D1 (B9 domain-containing protein 1) and CC2D2A (coiled-coil and C2 domain-containing protein 2A) at the transition zone are dependent on one another and on Sept2. Disruption of the complex in vitro causes a reduction in cilia formation and a loss of signalling receptors from the remaining cilia. Mouse knockouts of B9D1 and TMEM231 have identical defects in Sonic hedgehog (Shh) signalling and ciliogenesis. Strikingly, disruption of the complex increases the rate of diffusion into the ciliary membrane and the amount of plasma-membrane protein in the cilia.?The complex that we have described is essential for normal cilia function and acts as a diffusion barrier to maintain the cilia membrane as a compartmentalized signalling organelle.  相似文献   

20.
The biological function of motile cilia/flagella has long been recognized. The non-motile primary cilium, once regarded as a vestigial organelle, however, has been found recently to play unexpected roles in mammalian physiology and development. Defects in cilia have profound impact on human health. Diseases related to cilia, collectively called ciliopathies include male infertility, primary cilia dyskinesia, renal cyst formation, blindness, polydactyly, obesity, hypertension, and even mental retardation. Our current understanding of cilia and ciliopathies has been fueled by basic research employing various model organisms including Chlamydomonas, a unicellular green alga. This review article provides a general introduction to the cell biology of cilia and an overview of various cilia-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号