首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThe goal of this study was to investigate the performance of a pre-clinical SPECT/PET/CT system for 188Re imaging.MethodsPhantom experiments were performed aiming to assess the characteristics of two multi-pinhole collimators: ultra-high resolution collimator (UHRC) and high-energy ultra high resolution collimator (HE-URHC) for imaging 188Re. The spatial resolution, image contrast and contrast-to-noise ratio (CNR) were investigated using micro-Jaszczak phantoms. Additionally, the quantification accuracy of 188Re images was evaluated using two custom-designed phantoms. The 188Re images were compared to those obtained with 99mTc (gold standard); the acquired energy spectra were analyzed and Monte-Carlo simulations of the UHRC were performed. To verify our findings, a C57BL/6-mouse was injected with 188Re-microspheres and scanned with both collimators.ResultsThe spatial resolution achieved in 188Re images was comparable to that of 99mTc. Acquisitions using HE-UHRC yielded 188Re images with higher contrast and CNR than UHRC. Studies of quantitative accuracy of 188Re images resulted in <10% errors for both collimators when the activity was calculated within a small VOI around the object of interest. Similar quantification accuracy was achieved for 99mTc. However, 188Re images showed much higher levels of noise in the background. Monte-Carlo simulations showed that 188Re imaging with UHRC is severely affected by down-scattered photons from high-energy emissions. The mouse images showed similar biodistribution of 188Re-microspheres for both collimators.ConclusionsVECTor/CT provided 188Re images quantitatively accurate and with quality comparable to 99mTc. However, due to large penetration of UHRC by high-energy photons, the use of the HE-UHRC for imaging 188Re in VECTor/CT is recommended.  相似文献   

2.
This study was aimed at comparing the sensitivity and hot and cold contrasts obtained when imaging the PICKER thyroid phantom using gamma cameras fitted with either their ultra-high or high-resolution low-energy parallel hole collimator.Seventeen camera models from Elscint, General Electric, Siemens and Sopha Medical Vision were involved in the study for a total of 30 cameras and 52 camera heads. A single operator conducted the study in order to minimize the impact of human factors. The phantom contained about 74 MBq 99mTc and was imaged at 10 cm from the collimator face with the energy window that are recommended by the camera manufacturer. A total of 1 million counts were accumulated.Hot and cold contrasts were in mean of about 0.05 higher when using an ultra-high-resolution than when using a high-resolution low-energy collimator. This higher contrast was obtained at the expense of a mean reduction in sensitivity of 30%. In particular, Elscint cameras demonstrated a 30% lower sensitivity whatever the collimator type. The Sopha Medical Vision DST and DSX cameras and the General Electric Magicam camera offered the lowest contrasts among the cameras with a high-resolution collimator. Although this was accompanied by a higher than the mean sensitivity for the DST and DSX, the Magicam demonstrated sensitivity roughly identical to the mean of all the cameras with a high-resolution collimator.  相似文献   

3.
ObjectiveTo provide guidance for reliable identification of low-activity sentinel nodes in the setting of melanoma surgery using a commercial hand-held gamma camera.MethodsThe average uptake of 99mTc nanocolloid by sentinel nodes was evaluated in 95 excised nodes using a Sentinella 102® (Oncovision, Valencia, Spain) portable gamma camera. The device sensitivity was assessed for different source depths and collimator distances, imaging an 8-mm sphere filled with a known-activity solution of 99mTc. Five nuclear medicine physicians were asked to identify the source at different activity levels and positions within the field of view. For each image the number of signal counts inside a circular region of interest (ROI) was measured, while the variability of ROI counts among operators was assessed. The number of counts providing a minimal, near-constant inter-operator variability was determined as a criterion for a consistent identification of the source. Either the minimum activity or the acquisition time needed to collect the appropriate statistics were then calculated.ResultsThe median SN uptake (0.5%) turned out to be compatible with values reported in the literature. The sensitivity of the compact gamma camera ranged from ∼25 cpm/kBq to ∼1 cpm/kBq. A total of 50 counts in the ROI circumscribing the lymph node-simulating sphere appeared to be a robust criterion for identification of the source.ConclusionsTen megabecquerels of injected activity at the time of surgery and one minute of acquisition allows reliable identification of sentinel nodes for collimator-to-source distances up to 10 cm.  相似文献   

4.
We introduce and demonstrate the utility of coded aperture (CA) nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 x 10(3) cps/Bq (9400 cpm/microCi), compared to 4.4 x 10(4) cps/Bq (990 cpm/microCi) for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4-6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator). Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a) CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b) CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c) CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.  相似文献   

5.
The aim of this work was to assess the performance of a prototype compact gamma camera (MediPROBE) based on a CdTe semiconductor hybrid pixel detector, for coded aperture imaging. This probe can be adopted for various tasks in nuclear medicine such as preoperative sentinel lymph node localization, breast imaging with 99mTc radiotracers and thyroid imaging, and in general in radioguided surgery tasks. The hybrid detector is an assembly of a 1-mm thick CdTe semiconductor detector bump-bonded to a photon-counting CMOS readout circuit of the Medipix2 series or energy-sensitive Timepix detector. MediPROBE was equipped with a set of two coded aperture masks with 0.07-mm or 0.08-mm diameter holes. We performed laboratory measurements of field of view, system spatial resolution, and signal-difference-to-noise ratio, by using gamma-emitting radioactive sources (109Cd, 125I, 241Am, 99mTc). The system spatial resolution in the lateral direction was 0.56 mm FWHM (coded aperture mask with holes of 0.08 mm and a 60 keV source) at a source-collimator distance of 50 mm and a field of view of 40 mm by side. Correspondingly, the longitudinal resolution in 3D source localization tasks was about 3 mm. MediPROBE showed a significant improvement in terms of spatial resolution when equipped with the high-resolution coded apertures, with respect to the performance previously reported with 1–2 mm pinhole apertures as well as with respect to adopting a 0.35 mm pinhole aperture.  相似文献   

6.
Several efforts have been focusing on the development of detectors devoted to high solution 99mTc sestamibi scintimammography to improve sensitivity for non palpable lesions. To this aim new high resolution scintillation gamma camera was developed under the “Integiated Mammographic Imaging” project. The gamma camera, made by CAEN and Pol.Hi.Tech, has an overall dimension of 112×120×75mm3. It consists of an array of 1 in. PSPMTs Hamamatsu H8520-C12 closely packed, a NaI(T1) scintillation array (1.8×1.8×6mm3 pixel) and a general purpose collimator. By this gamma camera a clinical experience on a few patients with breast cancer suspicion was performed. In this paper we show how high resolution approach allows to better categorize the lesions on the basis of the morphology of the spatial distribution of the radiotracer in the breast tissue. By comparing conventional and high resolution images of a young patient (29 y.o.) with breast cancer suspicion, it appears clear how the Anger, camera images showed a defined hot spot, highly suggestive of malignant lesion; on the contrary, the high resolution scan shown a large and inhomogeneous uptake area with the absence of clear and focal character of the uptake, to be considered as a probably non malignant lesions. This resuh was confirmed by byoptical findings that diagnosed the echographic findings as a benign inflammatory lesion.  相似文献   

7.
Mannitol has been labelled with 99mTc by using cuprous chloride as a reducing agent. Blood and kidney clearance of 99mTc(Cu)-mannitol was slightly faster than that of 99mTc(Sn)-DTPA in rat and maximum radioactivity ratio of kidneys to blood was 84.6 at 5 min. A comparative study of 99mTc(Cu)-mannitol, 99mTc(Sn)-DTPA was made in rabbits by taking serial images of kidneys and bladder with a γ camera. Results show superiority of 99mTc(Cu)-mannitol over other agents for dynamic renal function studies.  相似文献   

8.
Elschot M  Nijsen JF  Dam AJ  de Jong HW 《PloS one》2011,6(11):e26174

Background

Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared.

Methodology/Principal Findings

Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions.

Conclusions/Significance

The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies.  相似文献   

9.
Small cell lung cancer (SCC) has the most rapid growth rate of the four cell types and metastasizes early. Present imaging modalities for staging include chest x-ray, CT, MRI and bone scans. In this preliminary study, we assessed the clinical role of 99mTc-monoclonal antibody (MOAB) scintigraphy in five patients with histologically proven SCC. Each patient was infused with 20–30 mCi of 99mTc labeled Fab fragment of MOAB (NR-LU-10, NeoRx, Seattle, Wash.). Total body simultaneous anterior and posterior images were obtained 14–16 h post injection. SPECT images of the chest were obtained through a 360 ° rotation of the gamma camera and recorded on a 62 × 64 × 16 matrix. Images (1.2cm thick) were generated in transaxial, sagittal and coronal views.Fourteen of fifteen chest lesions detected by CT were confirmed by 99mTc MOAB scintigraphy. Scintigraphy detected one additional chest lesion not seen by CT. Scintigraphy failed to detect a brain lesion (2 cm), a chest lesion, and two adrenal lesions, all of which were seen by CT. In one patient with multiple (more than 10) lesions in the liver, both scintigraphy and CT detected all lesions. Three spine lesions seen on 99mTc MDP scan and positive for metastasis on MRI concentrated 99mTc MOAB, but two rib lesions seen on 99mTc MDP bone scan did not concentrate 99mTc MOAB. It is concluded from these preliminary results that the potential usefulness of 99mTc MOAB scintigraphy as a complementary imaging modality in the staging of small cell lung cancer should be investigated further.  相似文献   

10.
The Hybrid Compact Gamma Camera (HCGC) is a small field of view (SFOV) portable hybrid gamma-optical camera intended for small organ imaging at the patient bedside. In this study, a thyroid phantom was used to determine the suitability of the HCGC for clinical thyroid imaging through comparison with large field of view (LFOV) system performance.A direct comparison with LFOV contrast performance showed that the lower sensitivity of the HCGC had a detrimental effect on image quality. Despite this, the contrast of HCGC images exceeded those of the LFOV cameras for some image features particularly when a high-resolution pinhole collimator was used.A clinical simulation showed that thyroid morphology was visible in a 5 min integrated image acquisition with an expected dependency on the activity within the thyroid. The first clinical use of the HCGC for imaging thyroid uptake of 123I is also presented.Measurements indicate that the HCGC has promising utility in thyroid imaging, particularly as its small size allows it to be brought into closer proximity with a patient. Future development of the energy response of the HCGC is expected to further improve image detectability.  相似文献   

11.
Multimerization of peptides can improve the binding characteristics of the tracer by increasing local ligand concentration and decreasing dissociation kinetics. In this study, a new bombesin homodimer was developed based on an ε-aminocaproic acid-bombesin(7–14) (Aca-bombesin(7–14)) fragment, which has been studied for targeting the gastrin-releasing peptide receptor (GRPR) in prostate cancer. The bombesin homodimer was conjugated to 6-hydrazinopyridine-3-carboxylic acid (HYNIC) and labeled with 99mTc for SPECT imaging. The in vitro binding affinity to GRPR, cell uptake, internalization and efflux kinetics of the radiolabeled bombesin dimer were investigated in the GRPR-expressing human prostate cancer cell line PC-3. Biodistribution and the GRPR-targeting potential were evaluated in PC-3 tumor-bearing athymic nude mice. When compared with the bombesin monomer, the binding affinity of the bombesin dimer is about ten times lower. However, the 99mTc labeled bombesin dimer showed a three times higher cellular uptake at 4 h after incubation, but similar internalization and efflux characters in vitro. Tumor uptake and in vivo pharmacokinetics in PC-3 tumor-bearing mice were comparable. The tumor was visible on the dynamic images in the first hour and could be clearly distinguished from non-targeted tissues on the static images after 4 h. The GRPR-targeting ability of the 99mTc labeled bombesin dimer was proven in vitro and in vivo. This bombesin homodimer provides a good starting point for further studies on enhancing the tumor targeting activity of bombesin multimers.  相似文献   

12.
BackgroundTo improve therapy outcome of Yttrium-90 selective internal radiation therapy (90Y SIRT), patient-specific post-therapeutic dosimetry is required. For this purpose, various dosimetric approaches based on different available imaging data have been reported. The aim of this work was to compare post-therapeutic 3D absorbed dose images using Technetium-99m (99mTc) MAA SPECT/CT, Yttrium-90 (90Y) bremsstrahlung (BRS) SPECT/CT, and 90Y PET/CT.MethodsTen SIRTs of nine patients with unresectable hepatocellular carcinoma (HCC) were investigated. The 99mTc SPECT/CT data, obtained from 99mTc-MAA-based treatment simulation prior to 90Y SIRT, were scaled with the administered 90Y therapy activity. 3D absorbed dose images were generated by dose kernel convolution with scaled 99mTc/90Y SPECT/CT, 90Y BRS SPECT/CT, and 90Y PET/CT data of each patient. Absorbed dose estimates in tumor and healthy liver tissue obtained using the two SPECT/CT methods were compared against 90Y PET/CT.ResultsThe percentage deviation of tumor absorbed dose estimates from 90Y PET/CT values was on average −2 ± 18% for scaled 99mTc/90Y SPECT/CT, whereas estimates from 90Y BRS SPECT/CT differed on average by −50 ± 13%. For healthy liver absorbed dose estimates, all three imaging methods revealed comparable values.ConclusionThe quantification capabilities of the imaging data influence 90Y SIRT tumor dosimetry, while healthy liver absorbed dose values were comparable for all investigated imaging data. When no 90Y PET/CT image data are available, the proposed scaled 99mTc/90Y SPECT/CT dosimetry method was found to be more appropriate for HCC tumor dosimetry than 90Y BRS SPECT/CT based dosimetry.  相似文献   

13.
Two new ligand systems for complexation with 99mTc were prepared. The two analogs of bisaminoethanethiol (BAT): N,N′-bis(2-methyl-2-mercaptopropyl)-2,2-dimethylpropylenediamine (PAT-HM) and N,N′-bis[2-(2-ethyl-1-mercaptopropyl)] ethylenediamine (TMR), form neutral and lipid soluble complexes with 99mTc that readily penetrate the blood-brain barrier following i.v. injection into rats. Although the 99mTc chelates do not display the prolonged brain retention required for use in single photon emission computed tomographic imaging studies, the fact that each ligand forms a neutral and lipid-soluble complex of high chemical stability when coordinated with 99mTc warrants further investigation to increase the site- and organ-specificity of these agents.  相似文献   

14.
 In this study we investigated the applicability of 99mTc-labeled CD19 monoclonal antibody (mAb) for tumor imaging in patients with B cell non-Hodgkin’s lymphoma. A 1-mg sample of murine CD19 mAb was labeled with approximately 550 MBq [99mTc]pertechnetate. The labeled mAb was administered i. v. to seven patients, four without and three with pretreatment with 10 mg unlabeled CD19 mAb. The number of circulating B cells was decreased by 44±5% 1 h after injection of the radiolabeled mAb. Peripheral B cells were coated with CD19, resulting in partial modulation of CD19, most pronounced in the three pretreated patients. Whole-body images were obtained with a gamma camera and compared with results obtained by conventional imaging techniques. Initially, blood-pool activity dominated, whereas 24 h after injection the radioactivity was mainly located in the spleen, kidneys and liver. In two patients, a lesion in the spleen appeared as an unlabeled spot. In one patient, a lesion in the femur, which was detected by computed tomography (CT) and gallium-67 scans, was also seen on the CD19 scan from 1 h after administration of the radioimmunoconjugate onwards. Good imaging of bone marrow infiltration was observed in one of three patients. Lymph node involvement was not observed in any of the patients in whom affected lymph nodes were detected by CT or gallium-67 scan. In conclusion, in the present study radioimmunodetection with 99mTc-labeled CD19 mAb was found to be inferior to CT and gallium-67 scanning in the diagnosis of patients with B cell non-Hodgkin’s lymphoma. Received: 14 March 1996 / Accepted: 14 May 1996  相似文献   

15.
Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting 99mTc-tricarbonyl complexes that are cationic or lack a charge, no anionic 99mTc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic 99mTc-tricarbonyl complex ([99mTc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [99mTc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [99mTc]TMCE was 12–17%, with a radiochemical purity greater than 98% after HPLC purification. [99mTc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [99mTc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes.  相似文献   

16.
Peptides are attracting increasing interest in nuclear oncology for targeted tumor diagnosis and therapy. We therefore synthesized new cyclic octapeptides conjugated with HYNIC by Fmoc solid-phase peptide synthesis. These were purified and analyzed by RP-HPLC, MALDI mass, 1H NMR, 13C NMR, HSQC, HMBC, COSY and IR spectroscopy. Conformational analysis of the peptides was performed by circular dichroism spectroscopy, in pure water and trifluoroethanol–water (1:1), revealed the presence of strong secondary structural features like β-sheet and random coils. Labeling was performed with 99mTc using Tricine and EDDA as coligands by SnCl2 method to get products with excellent radiochemical purity >99.5 %. Metabolic stability analysis did not show any evidence of breaking of the labeled compounds and formation of free 99mTc. Internalization studies were done and IC50 values were determined in somatostatin receptor-expressing C6 glioma cell line and rat brain cortex membrane, and the results compared with HYNIC-TOC as standard. The IC50 values of 99mTc-HYNIC-His3-Octreotate (21 ± 0.93 nM) and 99mTc-HYNIC-TOC (2.87 ± 0.41 nM) proved to be comparable. Biodistribution and image study on normal rat under gamma camera showed very high uptake in kidney and urine, indicating kidney as primary organ for metabolism and route of excretion. Biodistribution and image study on rats bearing C6 glioma tumor found high uptake in tumor (1.27 ± 0.15) and pancreas (1.71 ± 0.03). Using these findings, new derivatives can be prepared to develop 99mTc radiopharmaceuticals for imaging somatostatin receptor-positive tumors.  相似文献   

17.
Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc–HYNIC tetrazine reacted with the TCO–CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc–HYNIC–tetrazine for tumor imaging with pretargeted mAbs.  相似文献   

18.
The ciprofloxacin dithiocarbamate (CPFXDTC) was radiolabeled with [99mTc(CO)3(H2O)3]+ intermediate to form the 99mTc(CO)3–CPFXDTC complex in high yield. The 99mTc(CO)3–CPFXDTC complex was characterized by HPLC and its stability in serum was studied. Its partition coefficient indicated that it was a lipophilic complex. The bacterial binding efficiency of 99mTc(CO)3–CPFXDTC was almost the same as that of 99mTcN–CPFXDTC, and was higher than that of 99mTc–ciprofloxacin. Biodistribution results in induced infection mice showed 99mTc(CO)3–CPFXDTC had higher uptake at the sites of infection and better abscess/blood and abscess/muscle ratios than those of 99mTc–ciprofloxacin and 99mTcN–CPFXDTC. Single photon emission computed tomography (SPECT) static imaging study in infected rabbits demonstrated the uptake in the left thigh infection lesion was observable, while no accumulation in the right thigh muscle was found. These results suggested 99mTc(CO)3–CPFXDTC would be a promising candidate for further evaluation as infection imaging agent.  相似文献   

19.
A new method for labeling preformed liposomes with technetium-99m (99mTc) has been developed which is simple to perform and stable in vivo. Previous 99mTc-liposome labels have had variable labeling efficiencies and stability. This method consistently achieves high labeling efficiencies (> 90%) with excellent stability. A commercially available radiopharmaceutical kit—hexamethylpropyleneamine oxime (HM-PAO)—is reconstituted with 99mTcO4 and then incubated with preformed liposomes that encapsulate glutathione. The incubation takes only 30 min at room temperature. Liposomes that co-encapsulate other proteins such as hemoglobin or albumin, in addition to glutathione, also label with high efficiency. Both in vitro and in vivo studies indicate good stability of this label. Rabbit images show significant spleen and liver uptake at 2 and 20 h after liposome infusion without visualization of thyroid, stomach or bladder activity.This labeling method can be used to study the biodistribution of a wide variety of liposome preparations that are being tested as novel drug delivery systems. This method of labeling liposomes with 99mTc may also have applications in diagnostic imaging.  相似文献   

20.
PurposeThe aims of this work were to explore patient eligibility criteria for dosimetric studies in 223Ra therapy and evaluate the effects of differences in gamma camera calibration procedures into activity quantification.MethodsCalibrations with 223Ra were performed with four gamma cameras (3/8-inch crystal) acquiring planar static images with double-peak (82 and 154 keV, 20% wide) and MEGP collimator. The sensitivity was measured in air by varying activity, source-detector distance, and source diameter. Transmission curves were measured for attenuation/scatter correction with the pseudo-extrapolation number method, varying the experimental setup. 223Ra images of twenty-five patients (69 lesions) were acquired to study the lesions visibility. Univariate ROC analysis was performed considering visible/non visible lesions on 223Ra images as true positive/true negative group, and using as score value the lesion/soft tissue contrast ratio (CR) derived from 99mTc-MDP WB scan.ResultsSensitivity was nearly constant varying activity and distance (maximum s.d. = 2%). Partial volume effects were negligible for object area ⩾960 mm2. Transmission curve measurements are affected by experimental setup and source size, leading to activity quantification errors up to 20%. The ROC analysis yielded an AUC of 0.972 and an optimal threshold of CR of 10, corresponding to an accuracy of 92%.ConclusionThe minimum calibration protocol requires sensitivity and transmission curve measurements varying the object size, performing a careful procedure standardisation. Lesions with 99mTc-MDP CR higher than 10, not overlapping the GI tract, are generally visible on 223Ra images acquired at 24 h after the administration, and possibly eligible for dosimetric studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号