首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We explore in our study the effects of electrons and X-rays irradiations on the newest version of the Gafchromic EBT3 film. Experiments are performed using the Varian “TrueBeam 1.6” medical accelerator delivering 6 MV X-ray photons and 6 MeV electron beams as desired. The main interest is to compare the responses of EBT3 films exposed to two separate beams of electrons and photons, for radiation doses ranging up to 500 cGy. The analysis is done on a flatbed EPSON 10000 XL scanner and cross checked on a HP Scanjet 4850 scanner. Both scanners are used in reflection mode taking into account landscape and portrait scanning positions. After thorough verifications, the reflective scanning method can be used on EBT3 as an economic alternative to the transmission method which was also one of the goals of this study. A comparison is also done between single scan configuration including all samples in a single A4 (HP) or A3 (EPSON) format area and multiple scan procedure where each sample is scanned separately on its own. The images analyses are done using the ImageJ software. Results show significant influence of the scanning configuration but no significant differences between electron and photon irradiations for both single and multiple scan configurations. In conclusion, the film provides a reliable relative dose measurement method for electrons and photons irradiations in the medical field applications.  相似文献   

2.
ObjectiveDifferent dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation.MethodsPieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis.ResultsResponse functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy.ConclusionAlthough reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy.  相似文献   

3.
AimTo determine the energy and dose dependence of GafChromic EBT3-V3 film over an energy range 0.2 mm Al HVL to 6 MV.BackgroundThe decay scheme of a brachytherapy source may be complex and the spectrum of energy can be wide. LiF TLDs are the golden standard recommended for dosimetric measures in brachytherapy, for their energy independence, but TLDs could be not available in some centres. An alternative way to perform dose measurements is to use GafChromic films, but they show energy dependence.Methods and materialsFilms have been irradiated at increasing dose with three different beams: 6 MV beam, TPR20, 10 = (0.684 ± 0.01), HVL = (2.00 ± 0.01)mmAl and HVL = (0.20 ± 0.01)mmAl. Calibration curves were generated using the same dose range (0cGy to 850cGy) for the three energies. Using the 6 MV calibration curve as reference, the film response in terms of net optical density (OD) was evaluated.ResultsThe difference in the calibration curve obtained by irradiating the film with 6 MV and 2 mm Al HVL energy beams is less than 3 %, within the calibration uncertainty, in the dose range 500-850cGy. The OD of EBT3-V3 film is significantly lower at 0.2 mmAl HVL compared to 6 MV, showing differences up to 25 %.ConclusionWithin the range 6 MV-2 mm Al HVL and dose higher than 500cGy, GafChromic EBT3-V3 films are energy independent. In this dose range, films can be calibrated in a simple geometry, using a 6 MV Linac beam, and can be used for brachytherapy sources dose measures. The use of EBT3 films can be extended to reference dosimetry in Ir-192 clinical brachytherapy.  相似文献   

4.
The aim of this study is twofold: (a) determination of the spectral differences for flattening-filter-free (FFF) versus standard (STD) linac under various clinical conditions, (b) based on an extensive list of clinically important beam configurations, identification of clinical scenarios that lead to higher macroscopic dose perturbations due to the presence of high-Z material. The focus is on dose enhancement due to contrast agents including high-Z elements such as gold or gadolinium.EGSnrc was used to simulate clinical beams under various irradiation conditions: open/IMRT/spit-IMRT fields, in/out-off-field areas, different depths and field sizes. Spectra were calculated and analyzed for about 80 beams and for a total of 480 regions. Quantitative differential effects in beam quality were characterized using energy-dependent and cumulative dose perturbation metrics.Analysis of the spectral database showed that even though the general trends for both linacs (FFF/STD) were the same, there were crucial differences. In general, the relative changes between different conditions were smaller for FFF spectra. This was because of the higher component of low-energy photons of the FFF linac, which already lead to higher dose enhancement than for the STD linac (photon energies were more “uniformly” distributed for FFF spectra and henceforth their perturbation resulted in lesser relative changes). For out-of-field FFF spectra and split-IMRT fields the strongest enhancement were observed (∼25 and ∼5 respectively). Different spectral scenarios lead to different dose enhancements, however, they scale with the higher effective-Z of the materials and were directly related to the lower range of the spectra (<200 keV).  相似文献   

5.
6.
7.

Aim

To measure and compare the head scatter factor for 7 MV unflattened and 6 MV flattened photon beam using a home-made designed mini phantom.

Background

The head scatter factor (Sc) is one of the important parameters for MU calculation. There are multiple factors that influence the Sc values, like accelerator head, flattening filter, primary and secondary collimators.

Materials and methods

A columnar mini phantom was designed as recommended by AAPM Task Group 74 with high and low atomic number material for measurement of head scatter factors at 10 cm and dmax dose water equivalent thickness.

Results

The Sc values measured with high-Z are higher than the low-Z mini phantoms observed for both 6MV-FB and 7MV-UFB photon energies. Sc values of 7MV-UFB photon beams were smaller than those of the 6MV-FB photon beams (0.6–2.2% (Primus), 0.2–1.4% (Artiste) and 0.6–3.7% (Clinac iX (2300CD))) for field sizes ranging from 10 cm × 10 cm to 40 cm × 40 cm. The SSD had no influence on head scatter for both flattened and unflattened beams. The presence of wedge filters influences the Sc values. The collimator exchange effects showed that the opening of the upper jaw increases Sc irrespective of FF and FFF.

Conclusions

There were significant differences in Sc values measured for 6MV-FB and unflattened 7MV-UFB photon beams over the range of field sizes from 10 cm × 10 cm to 40 cm × 04 cm. Different results were obtained for measurements performed with low-Z and high-Z mini phantoms.  相似文献   

8.
BackgroundThe purpose of this study was to investigate the feasibility of MOSFET dosimeter in measuring eye dose during 2D MV portal imaging for setup verification in radiotherapy.Materials and methodsThe in-vivo dose measurements were performed by placing the dosimeters over the eyes of 30 brain patients during the acquisition of portal images in linear accelerator by delivering 1 MU with the field sizes of 10 × 10 cm2 and 15 × 15 cm2.ResultsThe mean doses received by the left and right eyes of 10 out of 30 patients when both eyes were completely inside the anterior portal field were found to be 2.56 ± 0.2 cGy and 2.75 ± 0.2, respectively. Similarly, for next 10 patients out of the same 30 patients the mean doses to left and right eyes when both eyes were completely out of the anterior portal fields were found to be 0.13 ± 0.02 cGy and 0.17 ± 0.02 cGy, respectively. The mean doses to ipsilateral and contralateral eye for the last 10 patients when one eye was inside the anterior portal field were found to be 3.28 ± 0.2 cGy and 0.36 ± 0.1 cGy, respectively.ConclusionThe promising results obtained during 2D MV portal imaging using MOSFET have shown that this dosimeter is well suitable for assessing low doses during imaging thereby enabling to optimize the imaging procedure using the dosimetric data obtained. In addition, the documentation of the dose received by the patient during imaging procedure is possible with the help of an in-built software in conjunction with the MOSFET reader module.  相似文献   

9.
AimIn this study, we investigated initial electron parameters of Siemens Artiste Linac with 6 MV photon beam using the Monte Carlo method.BackgroundIt is essential to define all the characteristics of initial electrons hitting the target, i.e. mean energy and full width of half maximum (FWHM) of the spatial distribution intensity, which is needed to run Monte Carlo simulations. The Monte Carlo is the most accurate method for simulation of radiotherapy treatments.Materials and methodsLinac head geometry was modeled using the BEAMnrc code. The phase space files were used as input file to DOSXYZnrc simulation to determine the dose distribution in a water phantom. We obtained percent depth dose curves and the lateral dose profile. All the results were obtained at 100 cm of SSD and for a 10 × 10 cm2 field.ResultsWe concluded that there existed a good conformity between Monte Carlo simulation and measurement data when we used electron mean energy of 6.3 MeV and 0.30 cm FWHM value as initial parameters. We observed that FWHM values had very little effect on PDD and we found that the electron mean energy and FWHM values affected the lateral dose profile. However, these effects are between tolerance values.ConclusionsThe initial parameters especially depend on components of a linac head. The phase space file which was obtained from Monte Carlo Simulation for a linac can be used as calculation of scattering, MLC leakage, to compare dose distribution on patients and in various studies.  相似文献   

10.
EBT3 films were evaluated for relative dosimetry in water, in the energy range of therapeutic kV X ray beams. A film batch was calibrated in air for all nine beam qualities of a clinical unit (XStrahl 200). Monte Carlo (MC) simulations using MCNP v.6 facilitated the calculation of the film absorbed dose (f), and beam quality (kbq) energy dependences in air. Results were found in agreement with corresponding data in the literature. Film samples from the same batch were irradiated in water along the central beam axis for each beam quality. Experimental percentage depth dose (PDD) results obtained using calibration data in air showed quality and depth dependent differences from corresponding MC simulations. These differences increased beyond film dosimetry uncertainty (<3.3%), reaching up to 8% at increased depth. The observed differences reduced only slightly when spectral variation as a function of measurement point was accounted for, using photon effective energy. PDD measurements and corresponding MC results facilitated the determination of f and kbq in water. Results showed that the origin of the observed differences between experimental and MC PDD results is the difference between film response in air and water, as a result of radiation field perturbation from the film oriented along the central beam axis. This implies a directional dependence of film response which necessitates that the angular distribution of photons impinging on the film is the same in the calibration and measurement geometries.  相似文献   

11.
PurposeDosimetry of fast, epithermal and thermal photoneutrons in 6 MV X-ray beams of two medical accelerators were studied by novel dosimetry methods.MethodsA Siemens ONCOR and an Elekta COMPACT medical accelerators were used. Fast, epithermal and thermal photoneutron dose equivalents in 10 cm × 10 cm 6 MV X-rays fields were determined in air and on surface of a polyethylene phantom in X and Y directions. Polycarbonate dosimeters as bare or with enriched 10B convertors (with or without cadmium covers) were used applying a 50 Hz-HV electrochemical etching method.ResultsFast, epithermal and thermal photoneutron dose equivalents were efficiently determined respectively as ∼1145.8, ∼45.3 and ∼170.6 μSv in air and ∼1888.5, ∼96.1 and ∼640.6 μSv on phantom per 100 Gy X-rays at the isocenter of Siemens ONCOR accelerator in air. The dose equivalent is maximum at the isocenter which decreases as distance from it increases reaching a constant level. Tissue-to-air ratios are constants up to 15 cm from the isocenter. No photoneutrons was detected in the Elekta COMPACT accelerator.ConclusionsFast, epithermal and thermal photoneutron dosimetry of 6 MV X-rays were made by novel dosimetry methods in a Siemens ONCOR accelerator with sum dose equivalent per Gy of ∼0.0014% μSv with ∼0.21 MeV mean energy at the isocenter; i.e. ∼150 times smaller than that of 18 MV X-rays. This observation assures clinical safety of 6 MV X-rays in particular in single-mode machines like Elekta COMPACT producing no photoneutrons due to no “beryllium exit window” in the head structure.  相似文献   

12.
In order to optimize the tumour dose by using wedge filters, systematic studies were carried out to investigate the accuracy of the beam modifier algorithm in a computerized treatment planning system (Theraplan plus, version 3.8). The effect of different parameters such as beam hardening and softening coefficients on the wedge factor was also studied. A 15 MV photon beam obtained from a linear accelerator was used throughout the experiments. Normalized wedge factors were determined experimentally as well as with the Theraplan plus system as a function of field size and depth in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The attenuation coefficients, beam hardening coefficient, and beam softening coefficients were also determined experimentally using the 15 MV photon beam for each wedge angle. The measured normalized wedge factor was found to increase with increasing depth and field size for the 15 MV beam. The Theraplan plus calculated normalized wedge factor was found to be in good agreement with the experimental values. This study indicated that ignoring the dependence of the wedge factor on depth and field size will result in underexposure of the tumour.  相似文献   

13.
14.
15.
Monte Carlo (MC) dose calculation algorithms have been widely used to verify the accuracy of intensity-modulated radiotherapy (IMRT) dose distributions computed by conventional algorithms due to the ability to precisely account for the effects of tissue inhomogeneities and multileaf collimator characteristics. Both algorithms present, however, a particular difference in terms of dose calculation and report. Whereas dose from conventional methods is traditionally computed and reported as the water-equivalent dose (Dw), MC dose algorithms calculate and report dose to medium (Dm). In order to compare consistently both methods, the conversion of MC Dm into Dw is therefore necessary.This study aims to assess the effect of applying the conversion of MC-based Dm distributions to Dw for prostate IMRT plans generated for 6 MV photon beams. MC phantoms were created from the patient CT images using three different ramps to convert CT numbers into material and mass density: a conventional four material ramp (CTCREATE) and two simplified CT conversion ramps: (1) air and water with variable densities and (2) air and water with unit density. MC simulations were performed using the BEAMnrc code for the treatment head simulation and the DOSXYZnrc code for the patient dose calculation. The conversion of Dm to Dw by scaling with the stopping power ratios of water to medium was also performed in a post-MC calculation process.The comparison of MC dose distributions calculated in conventional and simplified (water with variable densities) phantoms showed that the effect of material composition on dose-volume histograms (DVH) was less than 1% for soft tissue and about 2.5% near and inside bone structures. The effect of material density on DVH was less than 1% for all tissues through the comparison of MC distributions performed in the two simplified phantoms considering water. Additionally, MC dose distributions were compared with the predictions from an Eclipse treatment planning system (TPS), which employed a pencil beam convolution (PBC) algorithm with Modified Batho Power Law heterogeneity correction. Eclipse PBC and MC calculations (conventional and simplified phantoms) agreed well (<1%) for soft tissues. For femoral heads, differences up to 3% were observed between the DVH for Eclipse PBC and MC calculated in conventional phantoms. The use of the CT conversion ramp of water with variable densities for MC simulations showed no dose discrepancies (0.5%) with the PBC algorithm. Moreover, converting Dm to Dw using mass stopping power ratios resulted in a significant shift (up to 6%) in the DVH for the femoral heads compared to the Eclipse PBC one.Our results show that, for prostate IMRT plans delivered with 6 MV photon beams, no conversion of MC dose from medium to water using stopping power ratio is needed. In contrast, MC dose calculations using water with variable density may be a simple way to solve the problem found using the dose conversion method based on the stopping power ratio.  相似文献   

16.
In electron radiotherapy, shielding material is required to attenuate beam and scatter. A newly introduced shielding material, tungsten functional paper (TFP), has been anticipated to become a very useful device that is lead-free, light, flexible, and easily processed, containing very fine tungsten powder at as much as 80% by weight. The purpose of this study was to investigate the dosimetric changes due to TFP shielding for electron beams. TFP (thickness 0–15 mm) was placed on water or a water-equivalent phantom. Percentage depth ionization and transmission were measured for 4, 6, and 9 MeV electron beams. Off-center ratio was also measured using film dosimetry at depth of dose maximum under similar conditions. Then, beam profiles and transmission with two shielding materials, TFP and lead, were evaluated. Reductions of 95% by using TFP at 0.5 cm depth occurred at 4, 9, and 15 mm with 4, 6, and 9 MeV electron beams, respectively. It is found that the dose tend to increase at the field edge shaped with TFP, which might be influenced by the thickness. TFP has several unique features and is very promising as a useful tool for radiation protection for electron beams, among others.  相似文献   

17.
BackgroundAnalysis of the survival rate of cells after irradiation with a specified dose of X-radiation might be one of the basic foundations for assessment of biological implications of ionizing radiation. Investigation of the influence of X-radiation dose rate on cells was carried out in vitro using the SF2 test.AimThe aim of this study was to investigate the influence of X-radiation dose rate on the surviving fraction of the K-562 cell line for two photon energies of 6 MV and 20 MV.Materials/MethodsTo measure the cells' reaction to X-radiation of variable dose rate human leukaemic K-562 cells were used. In order to fulfil the main aim of the study, the cell line was subjected to irradiation at two different dose rates. Total dose applied at once was 2 Gy. A quantitative evaluation of cell survival rate was carried out at every step of the experiment using a clonogenic assay.ResultsHigh dose rate at the energy of 6 MV decreased the percentage of surviving cells to 23%, while lower dose rate decreased it only to 36%. A similar effect is observed at the energy of 20MV-namely at the higher dose rate the percentage of surviving cells is 18%, whereas at the lower one it is only 34%.ConclusionsThe experiment has shown that when using a lower dose rate, the biological effect of ionizing radiation is less pronounced. However, at a higher dose rate higher radiosensitivity of cells is observed.  相似文献   

18.
19.
Multiple sclerosis (MS) is considered an autoimmune demyelinating disease of the CNS and myelin‐derived glycolipids are one of the targets of this autoimmune attack. In this study, we examined for the first time the plasma distribution of sulfatide isoforms. Sulfatides with long‐chain (C24 : 0 or C24 : 1) and short‐chain (C16 : 0 or C18 : 0) fatty acids were quantified in plasma of relapsing–remitting MS patients by ultra‐high‐performance liquid chromatography tandem mass spectrometry. We found that C18 : 0 and C24 : 1 sulfatide plasma levels positively correlated with the Expanded Disability Status Scale. C16/C18 : 0 and C16/C24 : 0 ratios also correlated with the age and the time since last relapse. Healthy women showed higher levels of C16 : 0 sulfatide than healthy men; however, this gender difference disappeared in MS patients. Our data underline the potential use of sulfatides as biomarkers in relapsing–remitting MS and points to a possible association with the higher susceptibility of women to develop MS.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号