首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《朊病毒》2013,7(1):52-61
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID50 U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID50 U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID50 units for sheep and 7.0 log ID50 units for deer. These estimates are similar to 7.9 log ID50 units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.  相似文献   

2.
Chronic wasting disease (CWD) is a fatal prion disease in deer and elk. Unique among the prion diseases, it is transmitted among captive and free-ranging animals. To facilitate studies of the biology of CWD prions, we generated five lines of transgenic (Tg) mice expressing prion protein (PrP) from Rocky Mountain elk (Cervus elaphus nelsoni), denoted Tg(ElkPrP), and two lines of Tg mice expressing PrP common to white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus), denoted Tg(DePrP). None of the Tg(ElkPrP) or Tg(DePrP) mice exhibited spontaneous neurologic dysfunction at more than 600 days of age. Brain samples from CWD-positive elk, white-tailed deer, and mule deer produced disease in Tg(ElkPrP) mice between 180 and 200 days after inoculation and in Tg(DePrP) mice between 300 and 400 days. One of eight cervid brain inocula transmitted disease to Tg(MoPrP)4053 mice overexpressing wild-type mouse PrP-A in approximately 540 days. Neuropathologic analysis revealed abundant PrP amyloid plaques in the brains of ill mice. Brain homogenates from symptomatic Tg(ElkPrP) mice produced disease in 120 to 190 days in Tg(ElkPrP) mice. In contrast to the Tg(ElkPrP) and Tg(DePrP) mice, Tg mice overexpressing human, bovine, or ovine PrP did not develop prion disease after inoculation with CWD prions from among nine different isolates after >500 days. These findings suggest that CWD prions from elk, mule deer, and white-tailed deer can be readily transmitted among these three cervid species.  相似文献   

3.
Two different scrapie prion strains with different characteristics were obtained from two sheep naturally infected with scrapie in Japan. In mice transmission, one (Tsukuba-1) showed shorter incubation periods (133+/-2 days) than the other (Tsukuba-2) (288+/-5 days). Spongiform changes and accumulation of an abnormal isoform of prion protein (PrP(Sc)) were observed throughout the brain in Tsukuba-1 inoculated mice, while the lesions and the PrP(Sc) accumulation were localized in the brain stem of mice with Tsukuba-2. Western blot analysis showed that there was no strain-specific glycoform of PrP(Sc) within these two strains. A super-infection experiment revealed that neither strain interfered with the other's propagation.  相似文献   

4.
Adult Elaeophora schneideri were recovered from the common carotid artery and its branches in 14 of 14 mule deer, Odocoileus hemionus, and 3 of 9 Barbary sheep or aoudads, Ammotragus lervia, from Palo Duro Canyon in the Texas Panhandle. Gross cutaneous lesions attributable to elaeophorosis in the Barbary sheep varied from small circumscribed scars up to 10 cm in diameter usually on the poll or orbital region to extensive proliferative irregular encrustations on the frontal, temporal and orbital regions, sometimes extending to the ears and muzzle. Individual lesions varied from slate-gray scarred areas to brown proliferative edematous and hyperemic encrustations, sometimes with depigmented pustules a few millimeters in diameter. Microscopic lesions ranged from granulation tissue to severe pyogranulomatous reactions with neutrophils, eosinophils, lymphocytes and plasma cells as the primary infiltration. Foreign body giant cells and/or microfilariae were not observed. Microscopic changes in the carotid arteries and their branches were limited to small villous projections on the intimal surface apparently resulting from medial hyperplasia. Cutaneous lesions attributable to elaeophorosis were not observed in mule deer. Histopathologic lesions in the carotid arteries of mule deer were similar to those observed in Barbary sheep. The comparative pathology of elaeophorosis in various hosts is reviewed and discussed in terms of its pathology in Barbary sheep. The potential ramifications of this infection on the expanding aoudad population in the southwestern United States require that elaeophorosis be considered in the management of this species, particularly in areas with sympatric mule deer populations.  相似文献   

5.
Parasitism was studied in white-tailed deer (Odocoileus virginianus) and domestic sheep (Ovis aries) which shared a common range in eastern West Virginia. Of 30 species of internal parasites, 11 were found in deer and 22 in sheep. Five parasites, Sarcocystis sp., Cysticercus tenuicollis, Oesophagostomum venulosum, Cooperia punctata, and Gongylonema pulchrum, occurred in both deer and sheep. An index of similarity of 17.2 suggests that the parasite faunas of these hosts are distinct, and that it is unlikely that white-tailed deer are reservoirs of common parasites of domestic sheep in the southern Appalachian region.  相似文献   

6.
7.
Chronic wasting disease (CWD) is a prion disease of captive and free-ranging deer (Odocoileus spp), elk (Cervus elaphus nelsonii) and moose (Alces alces shirasi). Unlike in most other prion diseases, in CWD prions are shed in urine and feces, which most likely contributes to the horizontal transmission within and between cervid species. To date, CWD ante-mortem diagnosis is only possible by immunohistochemical detection of protease resistant prion protein (PrPSc) in tonsil or recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsies, which requires anesthesia of animals. We report on detection of CWD prions in urine collected from pre-symptomatic deer and in fecal extracts by using real time quaking-induced conversion (RT-QuIC). This assay can be useful for non-invasive pre-symptomatic diagnosis and surveillance of CWD.  相似文献   

8.
9.
We generated mice expressing cervid prion protein to produce a transgenic system simulating chronic wasting disease (CWD) in deer and elk. While normal mice were resistant to CWD, these transgenic mice uniformly developed signs of neurological dysfunction approximately 230 days following intracerebral inoculation with four CWD isolates. Inoculated transgenic mice homozygous for the transgene array developed disease after approximately 160 days. The brains of sick transgenic mice exhibited widespread spongiform degeneration and contained abnormal prion protein and abundant amyloid plaques, many of which were florid plaques. Transmission studies indicated that the same prion strain caused CWD in the analyzed mule deer and elk. These mice provide a new and reliable tool for detecting CWD prions.  相似文献   

10.
Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.  相似文献   

11.
Roe deer (Capreolus capreolus), chamois (Rupicapra rupricapra rupicapra), and domestic sheep in the Orobie Alps, Italy, were serologically tested for antibodies to selected pathogens that may be transmitted across species. Antibodies against Brucella spp. and bovine herpesvirus 1 (roe deer and chamois only) were not detected in any species. In roe deer, antibodies were detected against Toxoplasma gondii (13%) and Neospora caninum (3%). Chamois tested positive for antibodies to T. gondii (5%), N. caninum (21%), bovine respiratory syncytial virus (BRSV) (41%), bovine parainfluenza type-3 virus (17%), pestiviruses (18%), and Mycoplasma conjunctivae (17%). In the sheep, particularly high antibody prevalence rates were found for T. gondii (78%), Chlamydophila spp. (20%), pestiviruses (90%), BRSV (82%), and M. conjunctivae (81%).  相似文献   

12.
13.
Red deer, sheep and reindeer grazing on their normal hill ranges were examined at intervals over a period of four years. Samples from the digestive tract were taken at different seasons and processed in the field. The Red deer and reindeer were killed before samples were taken; rumen samples from the sheep were taken by stomach tube, but a number of animals were also killed at different seasons to correlate stomach tube and whole rumen samples. The animals sampled were representative of the general condition of the herds. Examinations were made for parasites and any pathological conditions. In most instances parasitic infections were slight. Apparent seasonal changes were found in the compositions of the diets. The Red deer and sheep ate principally heather and grass, the proportion of heather increasing in the winter. The reindeer ate mainly grass in the summer, with lichens and grass forming the winter diet, and these animals seemed to have a higher nutritional status in the winter than did the other two species. The weights of the animals and of their rumen contents, the concentrations of rumen ammonia and volatile fatty acid, and the rates at which different dietary components were fermented are recorded. Rumen fermentation was low in winter and the diets were generally inadequate for the animals. A lack of nitrogen seemed to be a major factor. Some data on caecal contents are also given.  相似文献   

14.
Preclinical sheep with the highly scrapie-susceptible VRQ/VRQ PRNP genotype secrete prions from the oral cavity. In order to further understand the significance of orally available prions, buccal swabs were taken from sheep with a range of PRNP genotypes and analyzed by serial protein misfolding cyclic amplification (sPMCA). Prions were detected in buccal swabs from scrapie-exposed sheep of genotypes linked to high (VRQ/VRQ and ARQ/VRQ) and low (ARR/VRQ and AHQ/VRQ) lymphoreticular system involvement in scrapie pathogenesis. For both groups, the level of prion detection was significantly higher than that for scrapie-resistant ARR/ARR sheep which were kept in the same farm environment and acted as sentinel controls for prions derived from the environment which might contaminate the oral cavity. In addition, sheep with no exposure to the scrapie agent did not contain any measurable prions within the oral cavity. Furthermore, prions were detected in sheep over a wide age range representing various stages of preclinical disease. These data demonstrate that orally available scrapie prions may be a common feature in sheep incubating scrapie, regardless of the PRNP genotype and any associated high-level accumulation of PrP(Sc) within lymphoreticular tissues. PrP(Sc) was present in buccal swabs from a large proportion of sheep with PRNP genotypes associated with relatively low disease penetrance, indicating that subclinical scrapie infection is likely to be a common occurrence. The significance of positive sPMCA reactions was confirmed by the transmission of infectivity in buccal swab extracts to Tg338 mice, illustrating the likely importance of orally available prions in the horizontal transmission of scrapie.  相似文献   

15.
Mammalian prions     
Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.  相似文献   

16.
Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the “prion-like” spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.  相似文献   

17.
Prions constitute a rare class of protein, which can switch to a robust amyloid form and then propagate that form in the absence of a nucleic acid determinant, thereby creating a unique, protein-only infectious agent. Details of the mechanism that drives conversion to the prion form and then subsequent propagation of that form are beginning to emerge using a range of in vivo and in vitro approaches. Recent studies on both mammalian and fungal prions are providing a greater understanding of the structural features that distinguish prions from non-transmissible amyloids.  相似文献   

18.
Metallic prions     
Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号