首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shakhbazov AV  Kartel' NA 《Genetika》2008,44(8):1013-1022
Techniques of introduction of foreign genes into the plant genome have been intensely developed in order to directionally improve properties of crops. One of the key directions in plant bioengineering is searching for and analyzing promising genes, in particular, to construct genotypes with high resistance to pathogens and pests. In this review, the use for this purpose of transgenes coding for chitinase family enzymes is considered. Many of these transgenes have proved to be efficient factors for elevating plant resistance to pathogenic fungi.  相似文献   

2.
Enabling technologies for manipulating multiple genes on complex pathways   总被引:6,自引:0,他引:6  
Many complex biochemical pathways in plants have now been manipulated genetically, usually by suppression or over-expression of single genes. Further exploitation of the potential for plant genetic manipulation, both as a research tool and as a vehicle for plant biotechnology, will require the co-ordinate manipulation of multiple genes on a pathway. This goal is currently very difficult to achieve. A number of approaches have been taken to combine or `pyramid' transgenes in one plant and have met with varying degrees of success. These approaches include sexual crossing, re-transformation, co-transformation and the use of linked transgenes. Novel, alternative `enabling' technologies are also being developed that aim to use single transgenes to manipulate the expression of multiple genes. A chimeric transgene with linked partial gene sequences placed under the control of a single promoter can be used to co-ordinately suppress numerous plant endogenous genes. Constructs modelled on viral polyproteins can be used to simultaneously introduce multiple protein-coding genes into plant cells. In the course of our work on the lignin biosynthetic pathway, we have tested both conventional and novel methods for achieving co-ordinate suppression or over-expression of up to three plant lignin genes. In this article we review the literature concerning the manipulation of multiple genes in plants. We also report on our own experiences and results using different methods to perform directed manipulation of lignin biosynthesis in tobacco.  相似文献   

3.
Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.  相似文献   

4.
5.
Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions.  相似文献   

6.
Chiter A  Forbes JM  Blair GE 《FEBS letters》2000,481(2):164-168
The potential for transfer of antibiotic resistance genes from genetically modified (GM) plant material to microbes through genetic recombination in the human or animal gut is a consideration that has engendered caution in the use of GM foods. This study was aimed at defining the optimal physical and chemical conditions necessary to ensure sufficient fragmentation of DNA in plant tissues to a size where it would be unlikely to be stably transferred to bacterial gut microflora. The ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit (Rubisco SS) genes are of similar size (approximately 1.4 kb) to transgenes present in GM plants. DNA analysis and PCR amplification of Rubisco SS genes showed that fresh maize and maize silage contained high molecular weight DNA and intact Rubisco SS genes. Relatively high temperatures and pressurised steam were necessary to degrade fully genomic DNA and Rubisco SS genes in maize and wheat grains, the source of most animal feedstuffs. Furthermore, chemical expulsion and extrusion of oilseeds resulted in residues with completely degraded genomic DNA. These results imply that stringent conditions are needed in the processing of GM plant tissues for feedstuffs to eliminate the possibility of transmission of transgenes.  相似文献   

7.
The stable insertion and expression of multiple transgenes in crops is highly desirable, as the manipulation of complex agronomic traits and the introduction of novel biosynthetic pathways are dependent upon it. This study was performed to explore the frequency and efficiency of introducing multiple genes in soybean by using somatic embryogenesis and microprojectile bombardment transformation. The co-transformation frequency of six selectable marker or reporter genes (GusA, bleomycin resistance, glufosinate resistance, hygromycin resistance, green fluorescent protein, and kanamycin resistance) were followed throughout the T0, T1, and T2 generations. Three bombardment strategies were compared to determine the best method to generate transgenic plants that express the introduced transgenes and have a simple insertion pattern that would facilitate any downstream breeding. The plasmid bombardment treatments were (1) a six-gene-containing plasmid, (2) an equimolar treatment of five individual plasmids that collectively contained the six transgenes of interest (genes of glufosinate and hygromycin resistance were on the same plasmid), and (3) a 1:9 ratio mixture of the five plasmids, in which the plasmid containing the selectable marker used in the regeneration process, hygromycin resistance, was used in ninefold excess to all the other plasmids. Of the six bombardments performed per plasmid treatment, the results of seven independent events for the six-gene plasmid, four events for the 1:9 treatment, and a single regenerated event for the equimolar treatment indicate that containing all the transgenes on one plasmid just had an advantage in terms of frequency of a successful transformation events. Based on Southern analysis, the only events that contained all six transgenes was the one obtained by the equimolar treatment. No event was obtained that expressed all six transgenes, and certain transgenes seem to be non-randomly lost, namely gusA, bleomycin resistance, and glufosinate resistance, regardless of treatment. The addition of elements to optimize the expression of each gene cassette when multiple genes are in close proximity needs to be further investigated.  相似文献   

8.
Transgenic resistance to insects has been demonstrated in plants expressing insecticidal genes such as δ -endotoxins from Bacillus thuringiensis (Bt), protease inhibitors, enzymes, secondary plant metabolites, and plant lectins. While transgenic plants with introduced Bt genes have been deployed in several crops on a global scale, the alternative genes have received considerably less attention. The protease inhibitor and lectin genes largely affect insect growth and development and, in most instances, do not result in insect mortality. The effective concentrations of these proteins are much greater than the Bt toxin proteins. Therefore, the potential of some of the alternative genes can only be realized by deploying them in combination with conventional host plant resistance and Bt genes. Genes conferring resistance to insects can also be deployed as multilines or synthetic varieties. Initial indications from deployment of transgenics with insect resistance in diverse cropping systems in USA, Canada, Argentina, China, India, Australia, and South Africa suggest that single transgene products in standard cultivar backgrounds are not a recipe for sustainable pest management. Instead, a much more complex approach may be needed, one which may involve deployment of a combination of different transgenes in different backgrounds. Under diverse climatic conditions and cropping systems of tropics, the success in the utilization of transgenics for pest management may involve decentralized national breeding programs and several small-scale seed companies. While several transgenic crops with insecticidal genes have been introduced in the temperate regions, very little has been done to use this technology for improving crop productivity in the harsh environments of the tropics, where the need for increasing food production is most urgent. There is a need to develop appropriate strategies for deployment of transgenics for pest management, keeping in view the pest spectrum involved, and the effects on nontarget organisms in the ecosystem.  相似文献   

9.
Transgenic crops were first commercialised almost 20 years ago, which makes it a good opportunity to reflect on this technology. In this review, we compare its status with the predictions included in Vasil’s forecast published in 2002. Our analysis shows that science has provided a wide range of possibilities to modify different traits in plants, yet the economy benefits from that range to very different extents. We also point out the most important constituents of the technology development involving methodology improvement and novel traits expressed in varieties introduced into agriculture. Using native genes (or their elements) in transgenes, accumulating previously produced transgenes to cascade resistance and using herbicide resistance as a selectable marker have been considered typical of novel genetically modified (GM) plant varieties. A vast portion of the novelties in stacked varieties is doubtful in terms of EU regulations. Attention has also been directed to completely novel methodology solutions that hold out the prospect of a more comprehensive use of genetic modification in agriculture as a whole, and, particularly, make its use possible in the EU and even in sustainable agriculture.  相似文献   

10.
The development of new strategies to enhance resistance of plants to pathogens is instrumental in preventing agricultural losses. Lesion mimic, the spontaneous formation of lesions resembling hypersensitive response lesions in the absence of a pathogen, is a dramatic phenotype occasionally induced upon expression of certain transgenes in plants. These transgenes simulate the presence of a pathogen and, therefore, activate the plant anti-pathogen defense mechanisms and induce a state of systemic resistance. Lesion mimic genes have been successfully used to enhance the resistance of a number of different plants to pathogen attack. However, constitutive expression of these genes in plants is associated with the spontaneous formation of lesions on leaves and stems, reduced growth, and lower yield. We tested the possibility of using a wound-inducible promoter to control the expression of bacterio-opsin (bO), a transgene that confers a lesion mimic phenotype in tobacco and tomato plants when constitutively expressed. We found that plants with inducible expression of bO did not develop spontaneous lesions. Nevertheless, under controlled laboratory conditions, they were found to be resistant to infection by pathogens. The activation of defense mechanisms by the bO gene was not constitutive, and occurred in response to wounding or pathogen infection. Furthermore, wounding of transgenic tobacco plants resulted in the induction of systemic resistance to pathogen attack within 48 h. Our findings provide a promising initial assessment for the use of wound-inducible promoters as a new strategy to enhance pathogen resistance in transgenic crops by means of lesion mimic genes.  相似文献   

11.
A major limitation of crop biotechnology and breeding is the lack of efficient molecular technologies for precise engineering of target genomic loci. While transformation procedures have become routine for a growing number of plant species, the random introduction of complex transgenenic DNA into the plant genome by current methods generates unpredictable effects on both transgene and homologous native gene expression. The risk of transgene transfer into related plant species and consumers is another concern associated with the conventional transformation technologies. Various approaches to avoid or eliminate undesirable transgenes, most notably selectable marker genes used in plant transformation, have recently been developed. These approaches include cotransformation with two independent T-DNAs or plasmid DNAs followed by their subsequent segregation, transposon-mediated DNA elimination, and most recently, attempts to replace bacterial T-DNA borders and selectable marker genes with functional equivalents of plant origin. The use of site-specific recombination to remove undesired DNA from the plant genome and concomitantly, via excision-mediated DNA rearrangement, switch-activate by choice transgenes of agronomical, food or feed quality traits provides a versatile “transgene maintenance and control” strategy that can significantly contribute to the transfer of transgenic laboratory developments into farming practice. This review focuses on recent reports demonstrating the elimination of undesirable transgenes (essentially selectable marker and recombinase genes) from the plant genome and concomitant activation of a silent transgene (e.g., a reporter gene) mediated by different site-specific recombinases driven by constitutive or chemically, environmentally or developmentally regulated promoters. These reports indicate major progress in excision strategies which extends application of the technology from annual, sexually propagated plants towards perennial, woody and vegetatively propagated plants. Current trends and future prospects for optimization of excision-activation machinery and its practical implementation for the generation of transgenic plants and plant products free of undesired genes are discussed.  相似文献   

12.
A Gateway-based platform for multigene plant transformation   总被引:2,自引:0,他引:2  
The post-genomic era offers unrivalled opportunities for genetic manipulation of polygenic traits, multiple traits, and multiple gene products. However, remaining technical hurdles make the manipulation of multiple genes in plants difficult. Here we describe a Gateway-based vector system to enable multiple transgenes to be directly linked or fused. The vector system consists of a destination vector and two special attL-flanked entry vectors each containing an attR cassette incompatible with the attL. By multiple rounds of LR recombination reactions, which we call MultiRound Gateway, multiple transgenes can be delivered sequentially and indefinitely into the Gateway-compatible destination vector through alternate use of the two special entry vectors. In our proof-of-principle experiments we have used this vector system to construct a plant transformation vector containing seven functional DNA fragments, including a screening marker gene, two reporter genes and four matrix attachment region sequences. This system provides a platform for fully realizing the potential of plant genetic manipulation.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

13.
Factors influencing the fate and impact of hybrids between crop plants and their related species operate from the early zygote, through to plant establishment in different habitats, to their ability to form self-sustaining populations. Many of the classes of genes being introduced by modern methods of genetic modification are similar to those manipulated by conventional plant breeding. In assessing the impact of transgenes in hybrids between crops and related species, therefore, it is important to be informed about the consequences of hybridization between conventionally bred varieties and their relatives. Some transgenes will have novel effects (e.g. production of pharmaceutical substances or certain fatty acids) on plants, and are likely to need specific assessment studies to determine their impact on hybrids. This will be particularly important if there is the possibility of these transgenes becoming established in wild populations. Some recommendations for further research are outlined.  相似文献   

14.
Kalinina O  Zeller SL  Schmid B 《PloS one》2011,6(11):e28091
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes.  相似文献   

15.
During the efficient genetic transformation of plants with the gene of interest, some selectable marker genes are also used in order to identify the transgenic plant cells or tissues. Usually, antibiotic- or herbicide-selective agents and their corresponding resistance genes are used to introduce economically valuable genes into crop plants. From the biosafety authority and consumer viewpoints, the presence of selectable marker genes in released transgenic crops may be transferred to weeds or pathogenic microorganisms in the gastrointestinal tract or soil, making them resistant to treatment with herbicides or antibiotics, respectively. Sexual crossing also raises the problem of transgene expression because redundancy of transgenes in the genome may trigger homology-dependent gene silencing. The future potential of transgenic technologies for crop improvement depends greatly on our abilities to engineer stable expression of multiple transgenic traits in a predictable fashion and to prevent the transfer of undesirable transgenic material to non-transgenic crops and related species. Therefore, it is now essential to develop an efficient marker-free transgenic system. These considerations underline the development of various approaches designed to facilitate timely elimination of transgenes when their function is no longer needed. Due to the limiting number of available selectable marker genes, in future the stacking of transgenes will be increasingly desirable. The production of marker-free transgenic plants is now a critical requisite for their commercial deployment and also for engineering multiple and complex trait. Here we describe the current technologies to eliminate the selectable marker genes (SMG) in order to develop marker-free transgenic plants and also discuss the regulation and biosafety concern of genetically modified (GM) crops.  相似文献   

16.
Transgenics from several forest tree species, carrying a number of commercially important recombinant genes, have been produced, and are undergoing confined field trials in a number of countries. However, there are questions and issues regarding stability of transgene expression and transgene dispersal that need to be addressed in long-lived forest trees. Variation in transgene expression is not uncommon in the primary transformants in plants, and is undesirable as it requires screening a large number of transformants in order to select transgenic lines with acceptable levels of transgene expression. Therefore, the current focus of plant transformation is toward fine tuning of transgene expression and stability in the transgenic forest trees. Although a number of studies have reported a relatively stable transgene expression for several target traits, including herbicide resistance, insect resistance, and lignin modification, there was also some unintended transgene instability in the genetically modified (GM) forest trees. Transgene dispersal from GM trees to feral forest populations and their containment remain important biological and regulatory issues facing commercial release of GM trees. Containment of transgenes must be in place to effectively prevent escape of transgenic pollen, seed, and vegetative propagules in economically important GM forest trees before their commercialization. Therefore, it is important to devise innovative technologies in genetic engineering that lead to genetically stable transgenic trees not only for qualitative traits (herbicide resistance, insect resistance), but also for quantitative traits (accelerated growth, increased height, increased wood density), and also prevent escape of transgenes in the forest trees.  相似文献   

17.
Efficacy of two newly synthesized cry1Ac and cry2Ab genes was checked in tobacco before their expression in cotton. Both genes were artificially synthesized and codon optimized with respect to cotton-preferred codon usage. These genes were cloned in a plant expression vector and then transformed into tobacco. Fifty-eight putative transgenic plants were recovered from the selected explants. Successful integration of both genes in plant genome was confirmed by PCR amplification. Expression of transgenes was confirmed by PCR amplification from total plant RNA. Detached leaf insect bioassays were conducted with Helicoverpa armigera and Spodoptera exigua larvae. About 12 % of the transgenic plants showed significantly high resistance to S. exigua. Significant mortality (62 %) of H. armigera was recorded within 24 h of bioassays. Both toxins showed synergistic effect in tobacco and broadened the spectrum of plant activity against insects.  相似文献   

18.
Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause.  相似文献   

19.
转单、双Bt基因741杨外源基因表达和抗虫性比较   总被引:2,自引:0,他引:2  
【目的】研究联合使用两种或两种以上的抗虫基因的抗虫效果, 同时鉴定并筛选出转双Bt基因741杨对鳞翅目和鞘翅目害虫有较强抗性的株系。【方法】选取转三基因(Cry3Aa+Cry1Ac+API)741杨8个株系、 转双基因(Cry1Ac+API)741杨1个株系和转单基因(Cry3Aa)741杨3个株系为试材, 从外源基因PCR检测、 毒蛋白表达和抗虫性三方面对转基因株系进行对比分析。【结果】经PCR扩增后各转基因株系出现了预期的电泳条带。ELISA蛋白检测显示转基因株系中都有与所含基因相应的Bt杀虫蛋白表达。用转基因株系新鲜叶片进行柳蓝叶甲Plagiodera versicolora和美国白蛾Hyphantria cunea室内饲虫实验表明: 转入不同抗虫基因的杨树对昆虫的抗性具有选择性, 对非靶标昆虫没有毒杀作用。转双Bt基因741杨具有双抗性, 不同转基因株系表现出高中低的抗性水平: 在对柳蓝叶甲的抗性上, 筛选出的其中5个高抗株系(pCCA1, pCCA2, pCCA5, pCCA6和pCCA9)的抗性水平明显比含Cry3Aa单Bt基因的3个高抗株系(pCC11, pCC53和pCC84)高; 在对美国白蛾的抗性上, 有7个株系(pCCA2~pCCA7和pCCA9)的抗性水平与含Cry1Ac单Bt基因株系(pB29)表现一致, 只有1个株系(pCCA1)对美国白蛾表现出了极低的抗性。【结论】多个抗虫基因在741杨上的联合使用, 不仅扩大了抗虫谱, 其中的高抗株系还具有了更高的抗虫能力, 有效地发挥了基因的叠加效应。  相似文献   

20.
Ablation of cells by the controlled expression of a lethal gene can be used to engineer plant traits such as male sterility and disease resistance. However, it may not be possible to achieve sufficient specificity of expression to prevent secondary effects in non-targeted tissues. In this paper we demonstrate that the extracellular ribonuclease, barnase, can be engineered into two complementary fragments, allowing overlapping promoter specificity to be used to enhance targeting specificity. Using a transient system, we first show that barnase can be split into two inactive peptide fragments, that when co-expressed can complement each other to reconstitute barnase activity. When a luciferase reporter gene was introduced into plant cells along with genes encoding both partial barnase peptides, a substantial reduction in luciferase activity was seen. Cytotoxicity of the reconstituted barnase was demonstrated by crossing together parents constitutively expressing each of the barnase fragments, then assaying their progeny for the presence of both partial barnase genes. None of over 300 tomato seeds planted resulted in a viable progeny that inherited both transgenes. When expression of the partial barnase genes was instead targeted to the tapetum, male sterility resulted. All 13 tomato progeny that inherited both transgenes were male sterile, whereas the three progeny inheriting only the N-terminal barnase gene were male fertile. Finally, we describe how male sterility generated by this type of two-component system can be used in hybrid seed production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号