首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The AMP-activated protein kinase (AMPK) signaling system plays a key role in cellular stress by repressing the inflammatory responses induced by the nuclear factor-kappa B (NF-κB) system. Previous studies suggest that the anti-inflammatory role of AMPK involves activation by adenine, but the mechanism that allows adenine to produce these effects has not yet been elucidated. In human umbilical vein endothelial cells (HUVECs), adenine was observed to induce the phosphorylation of AMPK in both a time- and dose-dependent manner as well as its downstream target acetyl Co-A carboxylase (ACC). Adenine also attenuated NF-κB targeting of gene expression in a dose-dependent manner and decreased monocyte adhesion to HUVECs following tumor necrosis factor (TNF-α) treatment. The short hairpin RNA (shRNA) against AMPK α1 in HUVECs attenuated the adenine-induced inhibition of NF-κB activation in response to TNF-α, thereby suggesting that the anti-inflammatory role of adenine is mediated by AMPK. Following the knockdown of adenosyl phosphoribosyl transferase (APRT) in HUVECs, adenine supplementation failed to induce the phosphorylation of AMPK and ACC. Similarly, the expression of a shRNA against APRT nullified the anti-inflammatory effects of adenine in HUVECs. These results suggested that the role of adenine as an AMPK activator is related to catabolism by APRT, which increases the cellular AMP levels to activate AMPK.  相似文献   

2.
3.
4.
Inflammation and infiltration of immune cells in white adipose tissue have been implicated in the development of obesity-associated insulin resistance. Likewise, dysregulation of the fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been proposed as a pathogenetic factor for these abnormalities based on both its links to insulin action and its anti-inflammatory effects. In this study, we examined the relationships between AMPK activity, the expression of multiple inflammatory markers in visceral (mesenteric and omental) and abdominal subcutaneous adipose tissue, and whole-body insulin sensitivity in morbidly obese patients (BMI 48 ± 1.9 kg/m2) undergoing gastric bypass surgery. AMPK activity was assessed by Western-blots (P-AMPK/T-AMPK) and mRNA levels of various markers of inflammation by qRT-PCR. Patients were stratified as insulin sensitive obese or insulin-resistant obese according to their HOMA-IR values. The results indicate that AMPK activity is lower in visceral than in subcutaneous abdominal adipose tissue of these patients and that this is associated with an increased expression of multiple inflammatory genes. They also revealed that AMPK activity is lower in adipose tissue of obese patients who are insulin resistant (HOMA-IR > 2.3) than in BMI-matched insulin sensitive subjects. Furthermore, this difference was evident in all three fat depots. In conclusion, the data suggest that there are close links between reduced AMPK activity and inflammation in white adipose tissue, and whole-body insulin resistance in obese humans. Whether adipose tissue AMPK dysregulation is a causal factor for the development of the inflammation and insulin resistance remains to be determined.  相似文献   

5.
Obesity and insulin resistance are associated with chronic, low grade inflammation. Moreover, regulation of energy metabolism and immunity are highly integrated. We hypothesized that energy-sensitive coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase (AMPK) may modulate inflammatory gene expression in liver. Microarray analysis revealed that PGC-1α up-regulated expression of several cytokines and cytokine receptors, including interleukin 15 receptor α (IL15Rα) and, even more importantly, anti-inflammatory interleukin 1 receptor antagonist (IL1Rn). Overexpression of PGC-1α and induction of PGC-1α by fasting, physical exercise, glucagon, or cAMP was associated with increased IL1Rn mRNA and protein expression in hepatocytes. Knockdown of PGC-1α by siRNA down-regulated cAMP-induced expression of IL1Rn in mouse hepatocytes. Furthermore, knockdown of peroxisome proliferator-activated receptor α (PPARα) attenuated IL1Rn induction by PGC-1α. Overexpression of PGC-1α, at least partially through IL1Rn, suppressed interleukin 1β-induced expression of acute phase proteins, C-reactive protein, and haptoglobin. Fasting and exercise also induced IL15Rα expression, whereas glucagon and cAMP resulted in reduction in IL15Rα mRNA levels. Finally, AMPK activator metformin and adenoviral overexpression of AMPK up-regulated IL1Rn and down-regulated IL15Rα in primary hepatocytes. We conclude that PGC-1α and AMPK alter inflammatory gene expression in liver and thus integrate energy homeostasis and inflammation. Induction of IL1Rn by PGC-1α and AMPK may be involved in the beneficial effects of exercise and caloric restriction and putative anti-inflammatory effects of metformin.  相似文献   

6.
BackgroundUlcerative colitis (UC) is a non-specific chronic inflammatory disease. The incidence of UC in China has been increasing in recent years. Mogrol is an aglycone of mogrosides. Studies have shown that mogrosides have anti-oxygenation, anti-inflammatory, and laxative effects as well as other biological activities.PurposeTo investigate the beneficial effects of mogrol on UC and identify its underlying mechanisms.Study designWe used the dextran sodium sulphate (DSS)-induced UC model in mice, TNF-α-damaged NCM460 colonic epithelial cells, macrophage cells THP-M stimulated with lipopolysaccharide (LPS) / adenosine triphosphate (ATP) and compound C (an AMPK inhibitor) to confirm the key role of AMPK (AMP-activated protein kinase) activation.MethodsHistological evaluation, immunohistochemical staining, Western blot analysis, immunofluorescence assay and quantitative real time-PCR were used in the study.ResultsOral administration of mogrol (5 mg/kg/daily) in vivo significantly attenuated pathological colonic damage, inhibited inflammatory infiltration and improved the abnormal expression of NLRP3 inflammasome in colonic mucosa via the AMPK and NF-κB signaling pathways. In vitro, mogrol protected against intestinal epithelial barrier dysfunction by activating AMPK in TNF-α-treated NCM460 cells and inhibited the production of inflammatory mediator in LPS-stimulated THP-M cells. Furthermore, mogrol's effects were reversed by compound C intervention in DSS-induced UC model.ConclusionMogrol exerts protective effects in experimental UC and inhibits production of inflammatory mediators through activation of AMPK-mediated signaling pathways.  相似文献   

7.
3′-Deoxyadenosine, also known as cordycepin, is a known polyadenylation inhibitor with a large spectrum of biological activities, including anti-proliferative, pro-apoptotic and anti-inflammatory effects. In this study we confirm that cordycepin reduces the length of poly(A) tails, with some mRNAs being much more sensitive than others. The low doses of cordycepin that cause poly(A) changes also reduce the proliferation of NIH3T3 fibroblasts. At higher doses of the drug we observed inhibition of cell attachment and a reduction of focal adhesions. Furthermore, we observed a strong inhibition of total protein synthesis that correlates with an inhibition of mammalian target of rapamycin (mTOR) signaling, as observed by reductions in Akt kinase and 4E-binding protein (4EBP) phosphorylation. In 4EBP knock-out cells, the effect of cordycepin on translation is strongly reduced, confirming the role of this modification. In addition, the AMP-activated kinase (AMPK) was shown to be activated. Inhibition of AMPK prevented translation repression by cordycepin and abolished 4EBP1 dephosphorylation, indicating that the effect of cordycepin on mTOR signaling and protein synthesis is mediated by AMPK activation. We conclude that many of the reported biological effects of cordycepin are likely to be due to its effects on mTOR and AMPK signaling.  相似文献   

8.
Li L  Wu LL 《生理学报》2007,59(5):614-618
脂联素是主要由白色脂肪组织分泌的一种活性多肽,具有调节脂肪酸和葡萄糖代谢、抗炎、减轻动脉粥样硬化等多种生物学功能,血浆脂联素含量降低参与了代谢性疾病及心血管疾病的发生、发展。腺苷酸活化蛋白激酶(AMP.activated protein kinase,AMPK)是脂联素信号通路中的关键信号分子,本文就其在脂联素心血管保护效应中的作用作一综述,介绍脂联素改善糖、脂代谢紊乱、动脉粥样硬化、心力衰竭及心肌缺血,再灌注损伤作用机制的新进展。  相似文献   

9.

Objective

AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase critically involved in the regulation of cellular energy homeostasis. It is a central regulator of both lipid and glucose metabolism. Many studies have suggested that AMPK activation exert significant anti-inflammatory and immunosuppressive effects. In this study, we assessed whether targeted activation of AMPK inhibits inflammatory arthritis in vivo.

Methods

We tested the effect of A-769662, a specific AMPK agonist (60mg/kg/bid) in mouse models of antigen-induced arthritis (AIA) and passive K/BxN serum-induced arthritis. The passive K/BxN serum-induced arthritis model was also applied to AMPKα1-deficient mice. Joints were harvested and subjected to histological analysis. IL-6 expression was measured in both joint tissues and sera by ELISA. The effect of A-769662 on bone marrow derived macrophage (BMDM) response to stimulation with TLR2 and TLR4 agonists was tested in vitro.

Results

AMPK activation by A-769662 reduced inflammatory infiltration and joint damage in both mouse models. IL-6 expression in serum and arthritic joints was significantly decreased in A-769662-treated mice. AMPKα1 deficient mice mildly elicited an increase of clinical arthritis. IL-6 expression at both mRNA and protein levels, phosphorylation of p65 NF-κB and MAPK phosphorylation were inhibited by A-769662 in BMDMs stimulated with either TLR2 or TLR4 agonists.

Conclusions

AMPK activation by specific AMPK agonist A-769662 suppressed inflammatory arthritis in mice as well as IL-6 expression in serum and arthritic joints. These data suggest that targeted activation of AMPK has a potential to be an effective therapeutic strategy for IL-6 dependent inflammatory arthritis.  相似文献   

10.
Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP-activated protein kinase (AMPK) produces anti-inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin-1 beta (IL-1β), IL-6 and tumour necrosis factor alpha (TNF-α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP-activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose-dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL-1β, IL-6 and TNF-α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS-induced macrophage activation if AMPK was in deficient through siRNA-mediated approaches. Further, the anti-inflammatory effects produced by VitB6 or AICAR in LPS-treated macrophages were abolished in DOK3 gene knockout (DOK3−/−) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS-induced both systemic inflammation and acute pneumonia in wild-type mice, but not in DOK3−/− mice. VitB6 prevents LPS-induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.  相似文献   

11.
12.
13.
Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1–10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.  相似文献   

14.

Background

In endothelial cells, activation of the AMP-activated protein kinase (AMPK) has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO).

Methodology/Principal Findings

Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2-/- mice the interleukin (IL)-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2-/- mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK). Indeed, IKK (more specifically residues Ser177 and Ser181) was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2+/+ versus AMPKα2-/- mice.

Conclusions

These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK.  相似文献   

15.
《Phytomedicine》2015,22(9):837-846
PurposeThe current study investigated the efficacy of Cyclocarya paliurus chloroform extract (CPEC) and its two specific triterpenoids (cyclocaric acid B and cyclocarioside H) on the regulation of glucose disposal and the underlying mechanisms in 3T3-L1 adipocytes.MethodsMice and adipocytes were stimulated by macrophages-derived conditioned medium (Mac-CM) to induce insulin resistance. CPEC was evaluated in mice for its ability by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). To investigate the hypoglycemic mechanisms of CPEC and its two triterpenoids, glucose uptake, AMP-activated protein kinase (AMPK) activation, inhibitor of NF-κB kinase β (IKKβ) phosphorylation and insulin signaling transduction were detected in 3T3-L1 adipocytes using 2-NBDG uptake assay and Western blot analysis.ResultsMac-CM, an inflammatory stimulus which induced the glucose and insulin intolerance, increased phosphorylation of IKKβ, reduced glucose uptake and impaired insulin sensitivity. CPEC and two triterpenoids improved glucose consumption and increased AMPK phosphorylation under basal and inflammatory conditions. Moreover, CPEC and its two triterpenoids not only enhanced glucose uptake in an insulin-independent manner, but also restored insulin-mediated protein kinase B (Akt) phosphorylation by reducing the activation of IKKβ and regulating insulin receptor substrate-1 (IRS-1) serine/tyrosine phosphorylation. These beneficial effects were attenuated by AMPK inhibitor compound C, implying that the effects may be associated with AMPK activation.ConclusionsCPEC and its two triterpenoids promoted glucose uptake in the absence of insulin, as well as ameliorated IRS-1/PI3K/Akt pathway by inhibiting inflammation. These effects were related to the regulation of AMPK activity.  相似文献   

16.
The AMP-activated protein kinase (AMPK) and cAMP signaling systems are both key regulators of cellular metabolism. In this study, we show that AMPK activity is attenuated in response to cAMP-elevating agents through modulation of at least two of its alpha subunit phosphorylation sites, viz. alpha-Thr(172) and alpha1-Ser(485)/alpha2-Ser(491), in the clonal beta-cell line INS-1 as well as in mouse embryonic fibroblasts and COS cells. Forskolin, isobutylmethylxanthine, and the glucose-dependent insulinotropic peptide inhibited AMPK activity and reduced phosphorylation of the activation loop alpha-Thr(172) via inhibition of calcium/calmodulin-dependent protein kinase kinase-alpha and -beta, but not LKB1. These agents also enhanced phosphorylation of alpha-Ser(485/491) by the cAMP-dependent protein kinase. AMPK alpha-Ser(485/491) phosphorylation was necessary but not sufficient for inhibition of AMPK activity in response to forskolin/isobutylmethylxanthine. We show that AMPK alpha-Ser(485/491) can be a site for autophosphorylation, which may play a role in limiting AMPK activation in response to energy depletion or other regulators. Thus, our findings not only demonstrate cross-talk between the cAMP/cAMP-dependent protein kinase and AMPK signaling modules, but also describe a novel mechanism by which multisite phosphorylation of AMPK contributes to regulation of its enzyme activity.  相似文献   

17.
AMP-activated protein kinase (AMPK) is activated by increases in the intracellular AMP-to-ATP ratio and plays a central role in cellular responses to metabolic stress. Although activation of AMPK has been shown to have anti-inflammatory effects, there is little information concerning the role that AMPK may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of pharmacological activators of AMPK, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) and barberine, on Toll-like receptor 4 (TLR4)-induced neutrophil activation. AICAR and barberine dose-dependently activated AMPK in murine bone marrow neutrophils. Exposure of LPS-stimulated neutrophils to AICAR or barberine inhibited release of TNF-alpha and IL-6, as well as degradation of IkappaBalpha and nuclear translocation of NF-kappaB, compared with findings in neutrophil cultures that contained LPS without AICAR or barberine. Administration of AICAR to mice resulted in activation of AMPK in the lungs and was associated with decreased severity of LPS-induced lung injury, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-alpha and IL-6 in bronchoalveolar lavage fluid. These results suggest that AMPK activation reduces TLR4-induced neutrophil activation and diminishes the severity of neutrophil-driven proinflammatory processes, including acute lung injury.  相似文献   

18.
Resveratrol is a natural polyphenolic compound with anti-inflammatory, antioxidant and neuroprotective properties, and it serves as a chemopreventive and chemotherapeutic agent. However, only very limited data have been obtained regarding the effects of resveratrol on preadipocytes, and the mechanisms of these effects remain largely unknown. In this study, murine 3T3-L1 preadipocytes were incubated with resveratrol, and cell apoptosis was investigated. Resveratrol caused S-phase arrest to inhibit cell proliferation and significantly increased the lactate dehydrogenase leaking ratio. Hoechst 33258 staining and transmission electron microscopy revealed the ultrastructural changes in nuclear chromatins of apoptotic cells. Furthermore, resveratrol activated the mitochondrial signaling with decreases in the mitochondrial membrane potential, cytochrome c release and the activation of caspase 9 and caspase 3. Resveratrol treatment also increased the protein level of Sirt1. By using small interfering RNAs of Sirt1, adenosine-monophosphate-activated protein kinase (AMPK) α, survivin and the AMPK agonist (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) and specific inhibitors for protein kinase B (AKT) or caspases, it was demonstrated that activation of Sirt1 inhibited AKT activation and further decreased the expression of survivin. It could also increase AMPK activation. Both signaling pathways activated mitochondrion-mediated pathway. Our findings clarified the apoptotic effects of resveratrol in 3T3-L1 preadipocytes and revealed the involved pathway including AMPK, AKT and survivin, suggesting its potential therapeutic application in the treatment or prevention of obesity and related metabolic symptoms.  相似文献   

19.
Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy,inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling.AMP-activated protein kinase(AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.  相似文献   

20.
Excessive productions of inflammatory cytokines and free radicals are involved in spinal cord injury (SCI). Fibroblast growth factor 5 (FGF5) is associated with inflammatory response and oxidative damage, and we herein intend to determine its function in SCI. Lentivirus was instilled to overexpress or knockdown FGF5 expression in mice. Compound C or H89 2HCl were used to suppress AMP-activated protein kinase (AMPK) or protein kinase A (PKA), respectively. FGF5 level was significantly decreased during SCI. FGF5 overexpression mitigated, while FGF5 silence further facilitated inflammatory response, oxidative damage and SCI. Mechanically, FGF5 activated AMPK to attenuate SCI in a cAMP/PKA-dependent manner, while inhibiting AMPK or PKA with pharmacological methods significantly abolished the neuroprotective effects of FGF5 against SCI. More importantly, serum FGF5 level was decreased in SCI patients, and elevated serum FGF5 level often indicate better prognosis. Our study identifies FGF5 as an effective therapeutic and prognostic target for SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号