首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report investigations on the thermally regulated uptake and release of the chemotherapeutic drug doxorubicin from microgel thin films. A spin coating, layer-by-layer (scLbL) assembly approach was used to prepare thin films composed of thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-AAc) microgels by alternatively exposing a 3-aminopropyltrimethoxysilane (APTMS) functionalized glass substrate to polyanionic pNIPAm-AAc microgels and polycationic poly(allylamine hydrochloride) (PAH). Using this method, 10, 20, and 30 microgel layer films were constructed with uniform layer buildup, as confirmed by quartz crystal microgravimetry (QCM). The films were subsequently loaded with doxorubicin by cycling the temperature of the film in an aqueous doxorubicin solution between 25 and 50 degrees C. Release characteristics were then examined using UV-vis spectroscopy, which revealed temperature-dependent release properties.  相似文献   

2.
An efficient and scale-up ready single-step synthesis for the conjugation of thermoresponsive polymers to hyaluronic acid (HA) was established. Jeffamines(?) (JFM) and poly(N-isopropylacrylamide) (PNIPAM) were grafted to HA via direct amidation mediated by 1,1'-carbonyldiimidazole activation. The temperature-induced gelation of the semi-synthetic co-polymers was characterized by rheology as a function of the temperature and by differential scanning calorimetry (DSC). A HA-JFM conjugate with sol-gel transition in a physiologically relevant temperature range was identified. The grafting of PNIPAM resulted in the drastic change of the main rheological properties of native HA, revealing the hydrophobic non-covalent nature of the interactions between the thermoresponsive brushes in the gel state. Owing to the reversibility of these interactions and the sharpness of the transition, the HA-PNIPAM conjugates are suitable candidates for the incorporation of drugs, cells or ceramic materials for different biomedical applications.  相似文献   

3.
Gold nanorods, rod-shaped gold nanoparticles, have strong absorbance in the near-infrared region, and the absorbed light energy can be converted to heat, the so-called photothermal effect. The gold nanorods were coated with thermoresponsive polymers, which have different phase transition temperatures that were controlled by adding comonomers, N,N-dimethylacrylamide (DMAA) or acrylamide (AAm) to N-isopropylacrylamide (NIPAM). The phase transition temperatures of poly(NIPAM-DMAA) and poly(NIPAM-AAm)-coated gold nanorods were 38 and 41 °C, respectively, while polyNIPAM-coated gold nanorods showed phase transition at 34 °C. Irradiation of the coated gold nanorods using the near-infrared laser induced a decrease in their sizes due to a phase transition of the polymer layers. Poly(NIPAM-AAm)-coated gold nanorods stably circulated in the blood flow without a phase transition after intravenous injection. Irradiation of near-infrared light at a tumor after the injection resulted in the gold specifically accumulating in the tumor. This novel accumulation technique which combines a thermoresponsive polymer and the photothermal effect of the gold nanorods should be a powerful tool for targeted delivery in response to light irradiation.  相似文献   

4.
Rao J  Luo Z  Ge Z  Liu H  Liu S 《Biomacromolecules》2007,8(12):3871-3878
A polypeptide hybrid double hydrophilic diblock copolymer (DHBC), poly( N-isopropylacrylamide)- b-poly( l-glutamic acid) (PNIPAM- b-PLGA), was synthesized via the ring-opening polymerization of gamma-benzyl- l-glutamate N-carboxyanhydride (BLG-NCA) using monoamino-terminated PNIPAM as the macroinitiator, followed by deprotection of benzyl groups under alkaline conditions. Containing a thermoresponsive PNIPAM block and a pH-responsive PLGA block, the obtained polypeptide hybrid diblock copolymer molecularly dissolves in aqueous solution at alkaline pH and room temperature but supramolecularly self-assembles into PNIPAM-core micelles at alkaline pH and elevated temperatures and PLGA-core micelles at acidic pH and room temperature accompanied with coil-to-helix transition of the PLGA sequence. The pH- and thermoresponsive "schizophrenic" micellization behavior of PNIPAM- b-PLGA diblock copolymer has been investigated by (1)H NMR, optical transmittance, fluorescence probe measurement, transmission electron microscopy (TEM), dynamic and static laser light scattering (LLS), and circular dichroism (CD) spectroscopy. Moreover, the micellization process was investigated employing stopped-flow light scattering technique. The pH-induced micelle growth of PNIPAM- b-PLGA in aqueous solution exhibits drastically different kinetics compared to that of conventional pH-responsive DHBCs, probably due to the stabilization effects exerted by the formed alpha-helix secondary structures within the PLGA core at low pH. Exhibiting "schizophrenic" micellization, the polypeptide sequence of PNIPAM- b-PLGA can either locate within micelle cores or stabilizing coronas. The incorporation of polypeptide block into DHBCs can endow them with structural versatility, tunable spatial arrangement of chain segments within self-assembled nanostructures, and broader applications in the field of biomedicines.  相似文献   

5.
We have fabricated Lipogels consisting of a single POPC lipid bilayer supported by a micrometer-sized, thermoresponsive, hydrophobically modified (HM), hydrogel sphere. The hydrogel consists of a lightly cross-linked poly(N-isopropylacrylamide) (pNIPAM) core surrounded by a highly cross-linked acrylic acid (AA)-rich p(NIPAM-co-AA) shell. The lipid bilayer was assembled by binding liposomes to HM microgels, followed by several cycles of freeze-thaw. The pNIPAM volume phase transition (VPT) at ~32 °C was present both before and after hydrophobic modification and after lipid bilayer coating. Fluorescence studies confirmed the fusion of liposomes into a continuous single bilayer. At a temperature above the VPT, it was found that the volume decrease in the hydrogel was coupled to the appearance of highly curved obtrusions of the uncompromised lipid bilayer into the surroundings. It is anticipated that these properties of Lipogels will prove to be useful in drug delivery applications and in fundamental biophysical studies of membranes.  相似文献   

6.
This paper discusses the thermoresponsive nanoparticles obtained by self-assemblies of nonlinear oligosaccharide-based diblock copolymer systems. These diblock copolymers were synthesized by Cu(I)-catalyzed 1,3-dipolar azide/alkyne cycloaddition ("click" reaction) of propargyl-functionalized β-cyclodextrin (βCyD) and xyloglucooligosaccharide (XGO) with poly(N-isopropylacrylamide) (PNIPAM) having a terminal azido group prepared by atom transfer radical polymerization (ATRP). Elastic and quasi-elastic light scattering analysis of the dibock copolymers in H(2)O indicated that thermodynamic phase transitions of the PNIPAM blocks at their cloud points (T(cp)s ≈ 34 °C), around lower critical solution temperatures (LCSTs), triggered their self-assemblies into the nanoparticles. These nanoparticles had narrow size distributions and small interphases (i.e., sharp boundaries). The mean hydrodynamic radii (R(h)s) of the βCyD and XGO-based nanoparticles were determined to be around 150 and 250 nm upon slow heating (i.e., step-by-step heating), and 364 and 91.5 nm upon fast heating, respectively, depending on a predominance of the interchain association or the intrachain contraction. Transmission electron microscope (TEM) and field emission gun-scanning electron microscopy (FEG-SEM) images of the nanoparticles clearly showed compact spherical nanoparticles whose cores are mainly made with the PNIPAM blocks, whereas the rough shells consist in the oligosaccharidic blocks.  相似文献   

7.
Wan X  Liu T  Liu S 《Biomacromolecules》2011,12(4):1146-1154
We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ~60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.  相似文献   

8.
This study focuses on a microgel-based functionalization method applicable to polyester textiles for improving their hydrophilicity and/or moisture-management properties, eventually enhancing wear comfort. The method proposed aims at achieving pH-/temperature-controlled wettability of polyester within a physiological pH/temperature range. First, primary amine groups are created on polyester surfaces using ethylenediamine; second, biopolymer-based polyelectrolyte microgels are incorporated using the natural cross-linker genipin. The microgels consist of the pH-responsive natural polysaccharide chitosan and pH/thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) microparticles. Scanning electron microscopy confirmed the microgel presence on polyester surfaces. X-ray photoelectron spectroscopy revealed nitrogen concentration, supporting increased microscopy results. Electrokinetic analysis showed that functionalized polyester surfaces have a zero-charge point at pH 6.5, close to the microgel isoelectric point. Dynamic wetting measurements revealed that functionalized polyester has shorter total water absorption time than the reference. This absorption time is also pH dependent, based on dynamic contact angle and micro-roughness measurements, which indicated microgel swelling at different pH values. Furthermore, at 40 °C functionalized polyester has higher vapor transmission rates than the reference, even at high relative humidity. This was attributed to the microgel thermoresponsiveness, which was confirmed through the almost 50% decrease in microparticle size between 20 and 40 °C, as determined by dynamic light scattering measurements.  相似文献   

9.
Synthetic polycations have shown promise as gene delivery vehicles but suffer from an unacceptable toxicity and low transfection efficiency. Novel architectures are being explored to increase transfection efficiency, including copolymers with a thermoresponsive character. The physicochemical characterization of a family of copolymers comprising a core of the cationic polymer poly(ethylene imine) (PEI) with differing thermoresponsive poly( N-isopropylacrylamide) (PNIPAM) grafts has been carried out using pulsed-gradient spin-echo NMR (PGSE-NMR) and small-angle neutron scattering (SANS). For the copolymers that have longer chain PNIPAM grafts, there is clear evidence of the collapse of the grafts with increasing temperature and the associated emergence of an attractive interpolymer interaction. These facets depend on the number of PNIPAM grafts attached to the PEI core. While a collapse in the smaller PNIPAM grafts is observed for the third polymer, there is no appearance of the interpolymer attractive interaction. These observations provide further insight into the association behavior of these copolymers, which is fundamental to developing a full understanding of how they interact with nucleic acids. Furthermore, the differing behaviors of the three copolymers over temperatures in which the PNIPAM blocks undergo coil-to-globule transitions is indicative of changes in the presentation of charged-core and hydrophobic chain components, which are key factors affecting nucleic acid binding and, ultimately, cell transfection ability.  相似文献   

10.
Synthesis and volume phase transitions of glucose-sensitive microgels   总被引:1,自引:0,他引:1  
Zhang Y  Guan Y  Zhou S 《Biomacromolecules》2006,7(11):3196-3201
By the functionalization of poly(N-isopropylacrylamide-co-acrylic acid) microgels with 3-aminophenylboronic acid (APBA) via carbodiimide coupling, nearly monodisperse glucose-sensitive P(NIPAM-PBA) microgels with a diameter of several hundred nanometers were synthesized in aqueous media. Dynamic laser light scattering was used to study the glucose-sensitive and thermosensitive behaviors of the resultant microgels under various conditions. The introduction of the hydrophobic phenylboronic acid (PBA) group significantly decreases the volume phase transition temperature of the resultant microgels. As a result, the P(NIPAM-PBA) microgels with a 10.0 mol % PBA content are in a collapsed state at room temperature. However, the addition of glucose makes the microgels swell dramatically. The glucose-sensitivity of the PBA-containing microgels relies on the stabilization of the charged phenylborate ions by binding with glucose, which can convert more hydrophobic PBA groups to the hydrophilic phenylborate ions. The presence of glucose also induces a two-stage volume phase transition of the P(NIPAM-PBA) microgels, which is explained by the core-shell-like heterogeneous structure of the microgels induced by the formation of the unique glucose-bis(boronate) complex in the "core" area of the microgels. The effects of pH, ionic strength, and PBA content on the glucose sensitivity of the P(NIPAM-PBA) microgels were investigated.  相似文献   

11.
In this contribution, we describe the effects of amide coupling reactions on the physical properties of thermoresponsive hydrogel microparticles (microgels). These microgels, when treated via aqueous carbodiimide/sulfo-succinimide coupling protocols, displayed a dramatic modulation of the microgel phase transition thermodynamics. UV spectrophotometry was used to determine that this modulation was due to remarkably stable hydrogel conjugates of sulfo-NHS that resisted degradation under standard hydrolysis protocols. These intermediates result in a shift of the phase transition, along with a large increase in equilibrium microgel swelling degree, due to an increase in chain-chain Coulombic repulsion. Only aggressive hydrolysis protocols resulted in the recovery of the native microgel phase transition, suggesting that an unusually stable succinimidyl ester is formed in the microgel during coupling.  相似文献   

12.
Permeability control of glucose-sensitive nanoshells   总被引:1,自引:0,他引:1  
Zhang Y  Guan Y  Zhou S 《Biomacromolecules》2007,8(12):3842-3847
To study the permeability of hydrogel in nanoscale thickness, core-shell microgels with degradable poly( N-isopropylacrylamide) (PNIPAM) as the core and nondegradable phenylboronic acid (PBA)-conjugated poly( N-isopropylacrylamide) [P(NIPAM-PBA)] as the shell were designed and synthesized. Laser light scattering was used to study the volume phase transitions and core degradation behavior of the core-shell microgels. The release of the degraded core polymer chains can be conveniently followed by turbidity change. At room temperature, the degraded polymer segments diffuse freely out of the precursor poly( N-isopropylacrylamide-co-acrylic acid) gel shells in water. In contrast, the PBA-modified P(NIPAM-PBA) nanoshell can hold most of the degraded core polymer chains under the same conditions, thanks to its condensed structure at the collapsed state. Lowering the temperature or increasing pH increases the swelling degree of the P(NIPAM-PBA) shell, which provides methods to control its permeability by temperature and pH. The complexation of PBA groups with glucose also enhances the swelling of the nanoshell and, thus, increases its permeability. The understanding of how to control the permeability of the glucose-sensitive gel nanoshell in hollow microgel particles is very important for further design of self-regulated insulin delivery systems.  相似文献   

13.
In this study we develop a sequence-specific precipitation separation system of oligonucleotide (ODN) using a conjugate between poly(N-isopropylacrylamide) (PNIPAM) and ODN. PNIPAM is known as a thermoresponsive polymer and dehydrates to precipitate above its phase transition temperature in an aqueous milieu. The principal advantage of this separation system using the conjugate is that the hybridization reaction between the conjugate and oligonucleotide is conducted in homogeneous solution. The conjugate was prepared by copolymerization between N-isopropylacrylamide and a vinyl-derivatized (dT)(8). The obtained conjugate efficiently precipitated (dA)(8) from solution when the solution contained more than 1.5 M NaCl. The conjugate containing 3 nmol of (dT)(8) residue was able to precipitate 1.4 nmol of (dA)(8), suggesting that the (dT)(8) residue of the conjugate formed a triple helix with (dA)(8). From an equimolar mixture of (dA)(8) and its one point mutant, the conjugate selectively precipitated (dA)(8): the highest selectivity was obtained for the isolation of (dA)(8) from the mixture consisting of (dA)(4)dT(dA)(3) and (dA)(8). When the conjugate was applied for the precipitation of five oligo(dA)s having different chain lengths, the longer oligo(dA)s tended to be precipitated by the conjugate more efficiently than the shorter ones. The conjugate could be used repeatedly for precipitation of (dA)(8) without showing any loss in precipitation efficiency.  相似文献   

14.
Journal of Biological Physics - The characteristics of cultured cell attachment onto poly-l-lysine (PLL), collagen, and the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) were...  相似文献   

15.
In this study, we developed a poly(N-isopropylacrylamide)-based thermoresponsive polymeric material with a high content of hydroxyl groups. We newly designed the functional monomer, N-(2-hydroxyisopropyl)acrylamide (HIPAAm), considering maintaining the continuous and repeated structure of the isopropylamide group after copolymerization and the monomer reactivity ratios. The thermoresponsive polymer was derived by conventional radical copolymerization of HIPAAm with N-isopropylacrylamide (NIPAAm) in high yield. Estimation of monomer reactivity ratios, r(1) and r(2), supported the almost random sequence of the comonomers. The obtained copolymers showed a very sensitive phase transition and/or separation in response to temperature in aqueous media although they have many hydrophilic parts, and their thermoresponsive behavior was not affected by the pH. Furthermore, the cloud points of these copolymers closely depended on the HIPAAm content and could be easily controlled by adding salts. HIPAAm is expected to regulate the phase transition and/or separation temperature of the NIPAAm-based copolymers while maintaining their desirable sensitive thermoresponse. Differential scanning calorimetric analysis showed that dehydration of the polymer chains occurring in phase transition became incomplete with increasing HIPAAm content. Moreover, it was found that poly(NIPAAm-co-HIPAAm) having a high content of the HIPAAm unit showed liquid-liquid phase separation involving coacervation. The sizes of the coacervate droplets were relatively monodisperse and very minimal. Poly(NIPAAm-co-HIPAAm) is valuable for use in biomedical fields such as bioseparation.  相似文献   

16.
A novel thermoresponsive aqueous antithrombogenic coating material comprising a heparin bioconjugate with a six-branched, star-shaped poly(2-(dimethylaminoethyl)methacrylate) (6B-PDMAEMA), which has both thermoresponsive and cationic characters, was developed to reduce the thrombogenic potential of blood-contacting materials such as synthetic polymers or tissue-engineered tissues in cardiovascular devices. 6B-PDMAEMA with M(n) of ca. 24 kDa was designed as a prototype compound by initiator-transfer agent-terminator (iniferter)-based living radical photopolymerization from hexakis(N,N-diethyldithiocarbamylmethyl)benzene. Bioconjugation of heparin with 6B-PDMAEMA occurred as soon as both aqueous solutions were simply mixed to form particles. The particle size at 25 °C was less than several hundred nanometers in diameter under a heparin/6B-PDMAEMA mixing weight ratio of over 2.5. The particles were very stable because of the prevention of hydrolysis of 6B-PDMAEMA in its bioconjugated form. Because the lower critical solution temperature of the bioconjugate ranges from approximately 20 to 36 °C for the formation of microparticles, the coating could be done in an aqueous solution at low temperatures. The excellent adsorptivity and high durability of the coating above 37 °C was demonstrated on silicone and polyethylene films by surface chemical compositional analysis. Blood coagulation was significantly reduced on the bioconjugate-coated surfaces. Therefore, the thermoresponsive bioconjugate developed here appears to satisfy the initial requirements for a biocompatible aqueous coating material.  相似文献   

17.
Heterobifunctional block copolymers of poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM using a macromolecular trithiocarbonate PEG-based chain transfer agent. The polymerization showed all the expected features of living radical polymerization and allowed the synthesis of copolymers with different lengths of the PNIPAM block. The synthesized block copolymers contained a carboxylic acid group from L-lysine at the focal point and a trithiocarbonate group at the terminus of the PNIPAM block. The trithiocarbonate functionality was converted into a thiol group and used for conjugation of biotin to the end of the PNIPAM block. The copolymers exhibited temperature-dependent association behavior in aqueous solution with a phase transition of approximately 32 degrees C. The described heterobifunctional block copolymers show promise for surface modifications with the potential for stimulus-controlled surface presentation of ligands attached to the terminus of the PNIPAM block.  相似文献   

18.
Newly developed fabrication technique of thermoresponsive surface using RAFT-mediated block copolymerization and photolithography achieved stripe-like micropatterning of poly(N-isopropylacrylamide) (PIPAAm) brush domains and poly(N-isopropylacrylamide)-b-poly(N-acryloylmorpholine) domains. Normal human dermal fibroblasts were aligned on the physicochemically patterned surfaces simply by one-pot cell seeding. Fluorescence images showed the well-controlled orientation of actin fibers and fibronectin in the confluent cell layers with associated extracellular matrix (ECM) on the surfaces. Furthermore, the aligned cells were harvested as a tissue-like cellular monolayer, called "cell sheet" only by reducing temperature below PIPAAm's lower critical solution temperature (LCST) to 20 °C. The cell sheet harvested from the micropatterned surface possessed a different shrinking rate between vertical and parallel sides of the cell alignment (approximately 3:1 of aspect ratio). This indicates that the cell sheet maintains the alignment of cells and related ECM proteins, promising to show the mechanical and biological aspects of cell sheets harvested from the functionalized thermoresponsive surfaces.  相似文献   

19.
Cell sorting of specific target cells from a mixture of different cell types is a prerequisite for development of functional engineered tissues based on stem-cell and tissue engineering. This paper presents a new method of cell sorting that uses a mixture of thermoresponsive cell-adhesive and non-cell-adhesive substances. The former substance is poly(N-isopropylacrylamide)-grafted gelatin (PNIPAM-gelatin) and the latter is PNIPAM. Graded cell adhesion, produced by mixed coating of these thermoresponsive substances at an appropriate mixing ratio, clearly differentiated the adhesive potentials of two bovine vascular cell types (endothelial cell and smooth muscle cell). The sequential procedures of detachment at room temperature and subsequent replating at 37 degrees C on dishes coated with a mixed coating with the same composition as that employed previously yielded remarkably pure target cells, as determined using confocal laser scanning fluorescence microscopy. This method, leading to harvesting of target cells, is characteristic of simple manipulation with no cell damage. Such advantages are expected to facilitate stem-cell and tissue engineering.  相似文献   

20.
Jiang X  Ge Z  Xu J  Liu H  Liu S 《Biomacromolecules》2007,8(10):3184-3192
A double hydrophilic ABC triblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(N-isopropylacrylamide) (PDEA-b-PDMA-b-PNIPAM), containing the well-known pH-responsive PDEA block and thermoresponsive PNIPAM block, was synthesized by atom transfer radical polymerization via sequential monomer addition using ethyl 2-chloropropionate as the initiator. The obtained triblock copolymer exhibits interesting "schizophrenic" micellization behavior in aqueous solution, and supramolecularly self-assembles into three-layer "onion-like" PNIPAM-core micelles at acidic pH's and elevated temperatures and PDEA-core micelles with "inverted" structures at alkaline pH's and room temperature. In both cases, dynamic laser light scattering (LLS) and optical transmittance reveal the presence of near-monodisperse micelles, and the micelle formation/inversion process is fully reversible. Novel shell cross-linked (SCL) micelles with pH-responsive PDEA cores and thermoresponsive PNIPAM coronas were then facilely fabricated from the PDEA-b-PDMA-b-PNIPAM triblock copolymer by cross-linking the PDMA inner shells with 1,2-bis(2-iodoethoxy)ethane. The reversible pH-dependent swelling/shrinking of PDEA cores and thermosensitive collapse/aggregation of PNIPAM coronas of the obtained SCL micelles were investigated in detail by dynamic LLS, optical transmittance, and transmission electron microscopy. As the structurally stable SCL micelles possess pH-controllable core swellability and thermo-tunable corona permeability, the release profile of a model hydrophobic drug, dipyridamole, initially loaded within the hydrophobic PDEA core, can be dually controlled by both the solution pH and the temperature. This represents the first report of SCL micelles with multiresponsive cores and coronas, which may find practical applications in fields such as drug delivery and smart release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号