首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The formation of pyrophosphate (PPi) by condensation of orthophosphate (Pi) at low temperature (37°C) in the absence of condensing or phosphorylating agents could have been an ancient process in chemical evolution. In the present investigation the synthesis of32PPi from32Pi was carried out at pH 8.0 and PPi was found in larger amounts in the presence of insoluble Pi (with calcium or manganese ions) than in its absence (with magnesium ions, or with no divalent cations present). After 10 days of incubation in the presence of precipitated calcium phosphate, about 1.6 nmol/ml of PPi was formed (0.057% yield relative to insoluble Pi). The hypothesis that the reaction is dependent on precipitated Pi was reinforced by the effect of adding dimethyl sulfoxide (2.1–9.9 M) in the presence of magnesium ions: the amount of magnesium phosphate precipitated in the presence of the organic solvent was proportional to the amount of PPi formed. The large and negative activation entropies found in aqueous media with calcium ions and in a medium containing 11.3 M dimethyl sulfoxide with magnesium ions suggest that the reaction was favored by a hydrophobic phenomenon at the surface of solid Pi. This reaction could serve as a model for prebiotic formation of PPi.  相似文献   

2.
Phospho(enol)pyruvate (PEP) undergoes transphosphorylation to form pyrophosphate (PPi) and adenosine 5′-diphosphate (5′-ADP) with high yields in the presence of an adsorbent surface of calcium phosphate (Pi.Ca), which is considered to be an ancient mineral with catalytic properties. PPi formation is a result of the phosphorolytic cleavage of the enol phosphate group of PEP by precipitated Pi. The synthesis of PPi is dependent on the amount of the solid matrix; it increases with the amount of adsorbed PEP and upon addition of dimethyl sulfoxide (Me2SO), a molecule with high dipolar moment. Although it is saturated with PEP at neutral pH, the phosphorylating Pi.Ca surface becomes effective only in alkaline conditions. In a parallel reaction, PEP phosphorylates 5′-AMP to 5′-ADP with a yield that is sevenfold higher in the presence of the Pi.Ca surface than in its absence, indicating that the solid matrix promotes interaction between adsorbed molecules with a high potential for phosphoryl transfer. In contrast to phosphorolysis, this latter reaction is stimulated by Me2SO only in homogeneous solution. It is concluded that phosphate minerals may have coadjuvated in reactions involving different phosphorylated compounds and that molecules with high dipolar moment may have acted in mildly alkaline, primitive aqueous environments to modulate phosphoryl transfer reactions catalyzed by phosphate minerals. Received: 31 January 1996 / Revised: 31 May 1996  相似文献   

3.
A method is described for determination of inorganic pyrophosphate (PPi) in cell culture medium and in rabbit articular chondrocytes grown in the presence of radioactive orthophosphate (32Pi). Intra- and extracellular 32PPi formed was measured using high-performance liquid chromatographic (HPLC) separation of the PPi from orthophosphate (Pi) and other phosphate-containing compounds. The chromatographic separation on a weak anion-exchange column is based on the extent to which various phosphate compounds form complexes with Mg2+ at low pH and the rate at which such formation occurs. These complexes are eluted more readily than the uncomplexed compounds. Best results were obtained using a simultaneous gradient of Mg2+ ions and ionic strength. In this case separation of small amounts of PPi from a large excess of Pi was possible without prior removal of Pi or extraction of the PPi fraction. The assay is also useful for measurement of inorganic pyrophosphatase activity. The sensitivity of the assay depends on the specific activity of the added 32Pi and on the culture conditions, but is comparable with the most sensitive of the enzymatic assays. Sample preparation, particularly deproteinization, proved to be of importance. The losses of PPi which occur during procedures of this sort due to hydrolysis and coprecipitation were quantitated.  相似文献   

4.
Summary The enzyme-like kinetic properties of precipitated magnesium phosphate as a catalyst for formation of pyrophosphate (PPi) from phospho (enol)pyruvate (PEP) are described. This synthesis occurs at a low temperature (37°C) and represents a model that may help us understand the relevance to chemical evolution of minerals as ancient catalysts whose functions could have been taken over by contemporary enzymes. An insoluble Pi.Mg matrix was formed in a medium with 80% of the water replaced by dimethyl sulfoxide as a way of simulating conditions in a drying pond. Phospho(enol)pyruvate adsorbs onto the Pi.Mg surface according to a Langmuir isotherm, and the PEP concentration dependence of PPi formation follows a Michaelian-like function. A yield of 33% for transformation of the initially adsorbed PEP into PPi was attained after 4 days of incubation with equimolecular concentrations of Pi, MgCl2, and PEP. The magnesium concentration dependence for Pi and Mg precipitation, for adsorption of PEP onto solid Pi.Mg, and for PPi formation showed complex cooperative behavior. These results taken as a whole lead to the conclusion that the Pi.Mg surface not only provides a reactant for PPi formation but also catalyzes the reaction.Offprint requests to: A. Vieyra  相似文献   

5.
In this review the roles of specific proteins during the first step of mineralization and nucleation are discussed. Mineralization is initiated inside the extracellular organelles-matrix vesicles (MVs). MVs, containing relatively high concentrations of Ca2+ and inorganic phosphate (Pi), create an optimal environment to induce the formation of hydroxyapatite (HA). Special attention is given to two families of proteins present in MVs, annexins (AnxAs) and tissue-nonspecific alkaline phosphatases (TNAPs). Both families participate in the formation of HA crystals. AnxAs are Ca2+ - and lipid-binding proteins, which are involved in Ca2+ homeostasis in bone cells and in extracellular MVs. AnxAs form calcium ion channels within the membrane of MVs. Although the mechanisms of ion channel formation by AnxAs are not well understood, evidence is provided that acidic pH or GTP contribute to this process. Furthermore, low molecular mass ligands, as vitamin A derivatives, can modulate the activity of MVs by interacting with AnxAs and affecting their expression. AnxAs and other anionic proteins are also involved in the crystal nucleation. The second family of proteins, TNAPs, is associated with Pi homeostasis, and can hydrolyse a variety of phosphate compounds. ATP is released in the extracellular matrix, where it can be hydrolyzed by TNAPs, ATP hydrolases and nucleoside triphosphate (NTP) pyrophosphohydrolases. However, TNAP is probably not responsible for ATP-dependent Ca2+/phosphate complex formation. It can hydrolyse pyrophosphate (PPi), a known inhibitor of HA formation and a byproduct of NTP pyrophosphohydrolases. In this respect, antagonistic activities of TNAPs and NTP pyrophosphohydrolases can regulate the mineralization process.  相似文献   

6.
Nucleoside triphosphate pyrophosphohydrolase (EC 3.6.1.8) activity is associated with matrix vesicles purified from collagenase digests of fetal calf epiphyseal cartilage. This enzyme hydrolyzes nucleoside triphosphates to nucleotides and PPi, the latter inducing precipitation in the presence of Ca2+ and Pi. An assay for matrix vesicle nucleoside triphosphate pyrophosphohydrolase is developed using beta, gamma-methylene ATP as substrate. The assay is effective in the presence of matrix vesicle-associated ATPase, pyrophosphatase, and alkaline phosphatase activities. A soluble nucleoside triphosphate pyrophosphohydrolase is obtained from matrix vesicles by treatment with 5 mM sodium deoxycholate. The solubilized enzyme induced the precipitation of calcium phosphate in the presence of ATP, Ca2+, and Pi. Extraction of deoxycholate-solubilized enzymes from matrix vesicles with 1-butanol destroys nucleoside triphosphate pyrophosphohydrolase activity while enhancing the specific activities of ATPase, pyrophosphatase, and alkaline phosphatase. In solutions devoid of ATP and matrix vesicles, concentrations of PPi between 10 and 100 microM induce calcification in mixtures containing initial Ca2+ X P ion products of 3.5 to 7.9 mM2. This finding plus the discovery of nucleoside triphosphate pyrophosphohydrolase in matrix vesicles supports the view that these extracellular organelles induce calcium precipitation by the enzymatic production of PPi. Nucleoside triphosphate pyrophosphohydrolase is more active against pyrimidine nucleoside triphosphates than the corresponding purine derivatives. The pH optimum is 10.0 and the enzyme is neither activated nor inhibited by Mg2+ or Ca2+ ions or mixtures of the two. Vmax at pH 7.5 for beta, gamma-methylene ATP is 0.012 mumol of substrate hydrolyzed per min per mg of protein and Km is below 10 microM. The enzyme is irreversibly destroyed at pH 4 and is stable at pH 10.5.  相似文献   

7.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The matrix level of pyrophosphate (PPi) in mitochondria isolated from etiolated pea ( Pisum sativum L. cv. Alaska) stems was evaluated, on the basis of an enzymatic assay, to be approx. 0.2 m M . Pyrophosphate could enter from the cytoplasm to the mitochondria via adenine nucleotide translocase (ANT), because F and Ca2+ (two penetrating PPiase inhibitors) and atractylate (ANT inhibitor) inhibited PPiase activity in isolated mitochondria supplied with PPi. This result was also confirmed by measuring oxygen consumption and membrane potential (ΔΨ) in succinate-energized mitochondria. In a medium free of phosphate (Pi), the addition of PPi before the substrate rendered possible an ADP-stimulated oxygen consumption that was inhibited by F or Ca2+. In a similar experiment, ADP induced the dissipation of ΔΨ when it was added after the succinate-generated ΔΨ had reached a steady state and, again, F inhibited this dissipation. These results imply that PPi enters the mitochondria where it is hydrolyzed to 2 Pi which become available for the H+-ATPase (EC 3.6.1.34). In addition, PPi may be synthesized by the H+-PPiase (EC 3.6.1.1), acting as a synthase. This evidence arises from the observation that Pi stimulated an oxygen consumption (respiratory control ratio of 1.7) that was inhibited by F or Ca2+. The physiological role of the mitochondrial H+-PPiase is discussed in the light of the consideration that this enzyme can catalyse a readily reversible reaction.  相似文献   

9.
A PPi-dependent phosphofructotransferase (PPi-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.90) which catalyzes the conversion of fructose 6 phosphate (F-6-P) to fructose 1,6-bisphosphate (F-1, 6-P2) was isolated from a cytoplasmic fraction of Acholeplasma laidlawii B-PG9 and partially purified (430-fold). PPi was required as the phosphate donor. ATP, dATP, CTP, dCTP, GTP, dGTP, UTP, dUTP, ITP, TTP, ADP, or Pi could not substitute for PPi. The PPi-dependent reaction (2.0 mM PPi) was not altered in the presence of any of these nucleotides (2.0 mM) or in the presence of smaller (less than or equal to 300 microM) amounts of fructose 2,6-bisphosphate, (NH4)2SO4, AMP, citrate, GDP, or phosphoenolpyruvate. Mg2+ and a pH of 7.4 were required for maximum activity. The partially purified enzyme in sucrose density gradient experiments had an approximate molecular weight of 74,000 and a sedimentation coefficient of 6.7. A second form of the enzyme (molecular weight, 37,000) was detected, although in relatively smaller amounts, by using Blue Sepharose matrix when performing electrophoresis experiments. The back reaction, F-1, 6-P2 to F-6-P, required Pi; arsenate could substitute for Pi, but not PPi or any other nucleotide tested. The computer-derived kinetic constants (+/- standard deviation) for the reaction in the PPi-driven direction of F-1, 6-P2 were as follows: v, 38.9 +/- 0.48 mM min-1; Ka(PPi), 0.11 +/- 0.04 mM; Kb(F-6-P), 0.65 +/- 0.15 mM; and Kia(PPi), 0.39 +/- 0.11 mM. A. laidlawii B-PG9 required PPi not only for the PPi-phosphofructotransferase reaction which we describe but also for purine nucleoside kinase activity. a dependency unknown in any other organism. In A. laidlawii B-PG9, the PPi requirement may be met by reactions in this organism already known to synthesize PPi (e.g., dUTPase and purine nucleobase phosphoribosyltransferases). In almost all other cells, the conversion of F-6-P to F-1,6-P2 is ATP dependent, and the reaction is generally considered to be the rate-limiting step of glycolysis. The ability of A. laidlawii B-PG9 and one other acholeplasma to use PPi instead of ATP as an energy source may offer these cytochrome-deficient organisms some metabolic advantage and may represent a conserved metabolic remnant of an earlier evolutionary process.  相似文献   

10.
The formation of carbamyl phosphate (CAP) in dilute solutions of cyanate (NCO) and orthophosphate (Pi) was measured both in the absence and in the presence of a precipitated matrix of calcium phosphate (Pi.Ca). The second-order rate constant and the free energy of CAP synthesis were not modified by the presence of the solid matrix, indicating that synthesis occurs in the homogeneous Pi-containing solution. The elimination reaction of CAP to form NCO and Pi followed first-order kinetics and the rate constant was the same whether or not calcium phosphate was present. Elimination was not complete, and the steady level of remaining CAP was that expected from the free energy of synthesis. The formation of pyrophosphate (PPi) was detected in CAP-containing medium only in the presence of calcium, showing a close correlation with the amount of precipitated Pi.Ca. Phosphorolysis of CAP followed a sigmoidal time course, compatible with adsorption of CAP to the solid matrix as a prelude to transphosphorylation. Addition of 5-AMP and of short linear polyphosphates inhibited phosphorolysis of CAP. It is proposed that the presence of a solid phosphate matrix and the relative concentrations of cyano compounds, as well as those of nucleotides and inorganic polyphosphates, could have played a crucial role in the conservation of chemical energy of CAP and in its use in prebiotic phosphorylation reactions.  相似文献   

11.
We have developed two methods for quantitatively measuring inorganic pyrophosphate (PPi) in the presence of 10(3)--10(4) molar excesses of inorganic phosphate (Pi) and used them to measure the extent of enzyme-bound pyrophosphate (EPPi) formation in solutions of yeast inorganic pyrophosphatase and Pi. We have also measured the rate of enzyme-catalyzed H2O--phosphate oxygen exchange. We find both processes to have essentially identical dependence on Mg2+ and Pi concentrations, thus providing important confirmation for the recent proposal by Janson et al. (1979) that oxygen exchange proceeds via EPPi formation. Our results are consistent with a model in which three Mg2+ per active site are required for EPPi formation but inconsistent with a model requiring only two Mg2+ per active site and permit the formulation of an overall scheme for inorganic pyrophosphatase catalysis of PPi--Pi equilibration as well as the evaluation of equilibrium and rate constants in this scheme. The major results and conclusions of our work are the following: (a) the equilibrium constant for PPi (enzyme-bound) in equilibrium with 2Pi (enzyme-bound) is 4.8; (b) following PPi hydrolysis, the first released Pi contains an oxygen from solvent water; (c) the steps for PPi hydrolysis on the enzyme and for release of both product Pi's are all partially rate determining in overall enzyme-catalyzed PPi hydrolysis; (d) PPi formation on the enzyme is rate determining for H2O--Pi oxygen exchange; (e) PPi dissociation from the enzyme is very slow and is the rate-determining step in Pi--PPi exchange (Cohn, 1958; Janson et al., 1979). This also accounts for the observation that the calculated dissociation constant for MgPPi complex binding to enzyme is considerably lower than the measured Km for enzyme-catalyzed MgPPi hydrolysis.  相似文献   

12.
The energy derived from pyrophosphate (PPi) hydrolysis is used to pump protons across the tonoplast membrane, thus forming a proton gradient. In a plant's cytosol, the concentration of PPi varies between 10 and 800 microm, and the PPi concentration needed for one-half maximal activity of the maize (Zea mays) root tonoplast H+-pyrophosphatase is 30 microm. In this report, we show that the H+-pyrophosphatase of maize root vacuoles is able to hydrolyze PPi (Reaction 2) formed by Reaction 1, which is catalyzed by PPi-dependent phosphofructokinase (PFP): Fructose-1,6-bisphosphate (F1,6BP) + Pi <--> PPi +Fructose-6-phosphate (F6 P) (reaction 1) PPi --> 2 Pi (reaction 2) H+cyt --> H+vac (reaction 3) F1,6BP + H+cyt <--> H+vac + F6P + Pi (reaction 4) During the steady state, one-half of the inorganic phosphate released (Reaction 4) is ultimately derived from F1,6BP, whereas PFP continuously regenerates the pyrophosphate (PPi) hydrolyzed. A proton gradient (DeltapH) can be built up in tonoplast vesicles using PFP as a PPi-regenerating system. The Delta pH formed by the H+-pyrophosphatase can be dissipated by addition of 20 mm F6P, which drives Reaction 1 to the left and decreases the PPi available for the H+-pyrophosphatase. The maximal Delta pH attained by the pyrophosphatase coupled to the PFP reaction can be maintained by PFP activities far below those found in higher plants tissues.  相似文献   

13.
The inorganic pyrophosphate-requiring 6-phosphofructokinase of Entamoeba histolytica has been further investigated. The molecular weight of the enzyme is approximately 83,000 and its isoelectric point occurs at pH 5.8 to 6.0. The divalent cation requirement for reaction was explored. In the direction of fructose 6-phosphate formation half-maximal rate required 500 muM magnesium ion; in the direction of fructose bisphosphate formation 8 muM magnesium ion sufficed. ATP, PPi, polyphosphate, acetyl phosphate, or carbamyl phosphate cannot replace PPi as phosphate donor for the conversion of fructose 6-phosphate to fructose bisphosphate. In the direction of fructose 6-phosphate formation arsenate can replace orthophosphate. Isotope exchange studies indicate that little or no exchange occurs between Pi and PPi or between fructose 6-phosphate and fructose bisphosphate in the absence of a third substrate. These findings appear to rule out phosphoenzyme formation and a ping-pong reaction mechanism. PPi, Pi, and fructose bisphosphate are competitive inhibitors of fructose bisphosphate, PPi, and fructose 6-phosphate, respectively. This argues against an ordered mechanism and suggests a random mechanism. Fructose 6-phosphate and Pi were noncompetitive with respect to each other indicating the formation of a dead end complex. These product inhibition relationships are in accord with a Random Bi Bi mechanism.  相似文献   

14.
A theoretical analysis has been derived which allows the analytical calculation of the complete distribution of 18O-labeled Pi species expected to occur during medium Pi equilibrium HOH exchange of [18O]Pi and to be produced by intermediate Pi equilibrium HOH exchange during net hydrolysis of [18O]PPi or other labeled phosphate compounds. The observed distributions with catalysis by yeast inorganic pyrophosphatase are found to agree closely with the theoretical values indicating that the exchange reaction can be adequately described by a unique value of the partitioning of bound Pi between release from the enzyme versus formation of bound PPi with loss of an oxygen to the water. The limitations on the exclusion of other mechanisms are discussed. The extent of this partitioning does change, however, under some experimental conditions. At low pH, with activation by Mg2+ or Mn2+, the relative rate of release of Pi is found to increase. The extent of exchange is also dependent on the nature of the activating metal, being greatest with Co2+. During PPi hydrolysis with PPi in excess over Mg2+, a shift to lower extents of exchange is observed.  相似文献   

15.
In order to determine the concentration of pyrophosphate (PPi) and its subcellular distribution in Chara corallina, a new method to concentrate PPi from cell extracts was developed. PPi was extracted and concentrated as Ca2P2O7 under alkaline conditions. The amount of PPi in the precipitate was measured using an enzyme system containing pyrophosphate:fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) coupled to NADH oxidation in the presence of [ethylene-bis(oxyethylenenitrilo)]tetraacetic acid. The subcellular localization of PPi and inorganic phosphate (Pi) was studied using the intracellular perfusion technique. The relative volumes of the cytoplasm (6.4%) and the vacuole (93.6%) were determined by perfusing Lucifer Yellow CH into the vacuole and by assuming that the Lucifer Yellow CH dead space represented the cytoplasmic volume. The volume of the chloroplast layer was determined microscopically, and it was found that it occupied 10% of the Chara cytoplasm. PPi was present predominantly in the cytosol at a level of 193 microM, while it existed in the vacuole at a level of only 2.20 microM and less than 1 microM in chloroplasts. By contrast, Pi was distributed almost equally in the cytosol (12.0 mM), chloroplasts (16.2 mM), and the vacuole (6.70 mM). The electrochemical potential gradient across the tonoplast for H+ (delta mu H+ = -11.6 to -18.0 KJ/mol) was nearly equal to the free energy release from the hydrolysis of PPi in cytoplasm (delta Gpp = -18.9 KJ/mol), indicating that the H+-translocating inorganic pyrophosphatase can work as a H+ pump in C. corallina.  相似文献   

16.
Initial rates of pyrophosphate hydrolysis and synthesis by baker's yeast inorganic pyrophosphatase and equilibrium amounts of enzyme-bound and free pyrophosphate were measured over wide ranges of Mg2+ and respective substrate concentrations. Computer analysis of these data, in conjunction with those on phosphate/water oxygen exchange [Kasho, V. N. & Baykov, A. A. (1989) Biochem. Biophys. Res. Comm. 161, 475-480], yielded values of the equilibrium constants for Mg2+ binding to free enzyme and central complexes and values of the forward and reverse rate constants for the four reaction steps, namely, PPi binding/release, PPi hydrolysis/synthesis and two Pi binding/release steps. All catalytic steps were found to proceed through two parallel pathways, involving 3 or 4 Mg2+/PPi or 2 Pi bound. Product release is the slowest catalytic event in both hydrolysis and synthesis of pyrophosphate, at least, for the four-metal pathway. In the hydrolytic reaction, magnesium pyrophosphate binding is faster for the four-metal pathway, dissociation of the second Pi is faster for the three-metal pathway, while PPi hydrolysis and the release of the first Pi may proceed with similar rates. Release of pyrophosphate formed on the enzyme is faster for the three-metal pathway. Both pathways are expected to operate in vivo, and their relative contributions will vary with changes in the Mg2+ concentration, thus providing a means for pyrophosphatase-activity regulation.  相似文献   

17.
Orthophosphate (Pi) uptake was examined in human red blood cells at 37 degrees C in media containing physiological concentrations of Pi (1.0- 1.5 mM). Cells were shown to transport Pi by a 4,4'-dinitro stilbene- 2,2'-disulfonate (DNDS) -sensitive pathway (75%), a newly discovered sodium-phosphate (Na/Pi) cotransport pathway (20%), and a pathway linearly dependent on an extracellular phosphate concentration of up to 2.0 mM (5%). Kinetic evaluation of the Na/Pi cotransport pathway determined the K1/2 for activation by extracellular Pi ([Na]o = 140 mM) and extracellular Na [( Pi]o = 1.0 mM) to be 304 +/- 24 microM and 139 +/- 8 mM, respectively. The phosphate influx via the cotransport pathway exhibited a Vmax of 0.63 +/- 0.05 mmol Pi (kg Hb)-1(h)-1 at 140 mM Nao. Activation of Pi uptake by Nao gave Hill coefficients that came close to a value of 1.0. The Vmax of the Na/Pi cotransport varied threefold over the examined pH range (6.90-7.75); however, the Na/Pi stoichiometry of 1.73 +/- 0.15 was constant. The membrane transport inhibitors ouabain, bumetanide, and arsenate had no effect on the magnitude of the Na/Pi cotransport pathway. No difference was found between the rate of incorporation of extracellular Pi into cytosolic orthophosphate and the rate of incorporation into cytosolic nucleotide phosphates, but the rate of incorporation into other cytosolic organic phosphates was significantly slower. Depletion of intracellular total phosphorus inhibited the incorporation of extracellular Pi into the cytosolic nucleotide compartment; and this inhibition was not reversed by repletion of phosphorus to 75% of control levels. Extracellular 32Pi labeled the membrane-associated compounds that migrate on thin-layer chromatography (TLC) with the Rf values of ATP and ADP, but not those of 2,3-bisphosphoglycerate (2,3-DPG), AMP, or Pi. DNDS had no effect on the level of extracellular phosphate incorporation or on the TLC distribution of Pi in the membrane; however, substitution of extracellular sodium with N-methyl-D-glucamine inhibited phosphorylation of the membranes by 90% and markedly altered the chromatographic pattern of the membrane-associated phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
研究了景天酸代谢(CAM)植物菠萝(Ananascomosus)叶片绿色组织与贮水组织的苹果酸、腺苷酸及焦磷酸含量的昼夜变化。夜间苹果酸的积累仅发生在绿色组织中,而且,其含量也远高于贮水组织。绿色组织中能荷和无机磷含量夜间增高,白天下降。绿色组织中焦磷酸含量夜间增加,在白天的头几个小时迅速下降到低的水平,然后保持稳定。与绿色组织相比,贮水组织中ATP、ADP、无机磷和焦磷酸的含量低得多,且不表现昼夜变化,在贮水组织中没有测到AMP。  相似文献   

19.
20.
Extracellular inorganic pyrophosphate (PPi) is important in the regulation of mineralisation of bone, and in the pathogenesis of chondrocalcinosis, an arthritic disease in which calcium pyrophosphate dihydrate crystals form in articular cartilage. Nucleoside-triphosphate pyrophosphatase, which catalyses the formation of PPi, was previously observed at the surface of human articular chondrocytes in culture. A similar enzyme has been identified in osteoblast-like human bone cells in culture, and is active towards purine and pyrimidine nucleoside triphosphates. The enzyme has high affinity for ATP and is located on the cell surface, and thus could serve in the generation of extracellular PPi. Moreover, no other mechanism for the catabolism of small amounts of exogenous ATP is present in human bone cells. Further evidence for ecto-nucleoside-triphosphate pyrophosphatase serving in the generation of extracellular PPi in articular cartilage and bone was obtained by studying the ability of alternative substrates (which do not yield PPi) to inhibit generation of PPi from ATP. In both articular chondrocytes and bone cells, the enzyme exhibited an apparent preference for ATP over dinucleotide and phosphodiester substrates. Some potential inhibitors of the enzyme activity were also studied in both cell types. ADP moderately inhibited the activity but two bisphosphonate drugs were only slightly inhibitory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号