首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research evaluated fermentation characteristics (short-chain fatty acid [SCFA] production, pH, and gas production) resulting from fermentation of glucose-based carbohydrates using canine (n = 3) and human (n = 3) fecal inoculum. Substrates included lyophilized canine ileal digesta containing maltodextrin, gamma-cyclodextrin, high molecular weight (MW) pullulan (MW 100000), or low MW pullulan (MW 6300) obtained from an in vivo experiment. Fermentation for 6 and 10 h with human fecal microflora resulted in higher gas and SCFA production than did canine fecal microflora. High MW pullulan fermentation resulted in the highest (p < 0.05) gas production and lowest (p < 0.05) pH for both dogs and humans. Total SCFA production was highest (p < 0.05) for low MW pullulan fermented by canine microflora, and for gamma-cyclodextrin, high MW pullulan, and low MW pullulan fermented by human microflora. Differences were noted in fermentation characteristics of substrates present in ileal digesta.  相似文献   

2.
Two in vitro experiments were carried out to quantify the incorporation of nitrogen (N) by pig colonic bacteria during the fermentation of dietary fibre, including non-starch polysaccharides and resistant starch. In the first experiment, five purified carbohydrates were used: starch (S), cellulose (C), inulin (I), pectin (P) and xylan (X). In the second experiment, three pepsin-pancreatin hydrolysed ingredients were investigated: potato, sugar-beet pulp and wheat bran. The substrates were incubated in an inoculum, prepared from fresh faeces of sows and a buffer solution providing 15N-labelled NH4Cl. Gas production was monitored. Bacterial N incorporation (BNI) was estimated by measuring the incorporation of 15N in the solid residue at half-time to asymptotic gas production (T/2). The remaining substrate was analysed for sugar content. Short-chain fatty acids (SCFA) were determined in the liquid phase. In the first experiment, the fermentation kinetics differed between the substrates. P, S and I showed higher rates of degradation (P < 0.001), while X and C showed a longer lag time and T/2. The sugar disappearance reached 0.91, 0.90, 0.81, 0.56 and 0.46, respectively, for P, I, S, C and X. Among them, S and I fixed more N per gram substrate (P < 0.05) than C, X and P (22.9 and 23.2 mg fixed N per gram fermented substrate v. 11.3, 12.3 and 9.8, respectively). Production of SCFA was the highest for the substrates with low N fixation: 562 and 565 mg/g fermented substrate for X and C v. 290 to 451 for P, I and S (P < 0.01). In the second experiment, potato and sugar-beet pulp fermented more rapidly than wheat bran (P < 0.001). Substrate disappearance at T/2 varied from 0.17 to 0.50. BNI were 18.3, 17.0 and 10.2 fixed N per gram fermented substrate, for sugar-beet pulp, potato and wheat bran, respectively, but were not statistically different. SCFA productions were the highest with wheat bran (913 mg/g fermented substrate) followed by sugar-beet pulp (641) and potato (556) (P < 0.05). The differences in N uptake by intestinal bacteria are linked to the partitioning of the substrate energy content between bacterial growth and SCFA production. This partitioning varies according to the rate of fermentation and the chemical composition of the substrate, as shown by the regression equation linking BNI to T/2 and SCFA (r2 = 0.91, P < 0.01) and the correlation between BNI and insoluble dietary fibre (r = -0.77, P < 0.05) when pectin was discarded from the database.  相似文献   

3.

This study aimed to improve antioxidant effect and hepatoprotective effect of Inula britannica using fermentation. Epigallocatechin gallate (EGCG) in an I. britannica extract was found to be upregulated from 2.06 to 10.28 μg/mg during fermentation (p?<?0.001). After fermentation, DPPH radical-scavenging ABTS radical-scavenging, and superoxide anion-scavenging abilities increased to 92.65%, 694.25 μM Trolox/mL, and 86.38%, respectively, at 500 μg/mL (p?<?0.05). Cupric-ion-reducing capacity with formation of the Cu+-neocuproine complex increased by 5.88%, 6.38%, 3.24%, and 8.55% at 62.5 to 500 μg/mL. Ferric-ion-reducing capacity of the fermented extract increased by 20%, 7.16%, 3.85%, and 5.45% at each concentration (p?<?0.05). Unfermented extracts yielded cell viability of 91.42%, 90.59%, 88.38%, and 79.17%, whereas the fermented extract yielded 100.28%, 99.66%, 96.15%, and 89.90%, respectively, at each concentration in ethanol-damaged HepG2 cells (p?<?0.05). Additionally, the fermented extract decreased alanine transaminase activity from 117.2 to 61.7 U/mL in the ethanol-damaged HepG2 cell line (p?<?0.01). Overall, both antioxidant and hepatoprotective effect increased by fermentation in I. britannica extract. These properties are expected to lead to new antioxidant agents via production of EGCG by fermentation.

  相似文献   

4.
Over the past decade, in vitro methods have been developed to study intestinal fermentation in pigs and its influence on the digestive physiology and health. In these methods, ingredients are fermented by a bacterial inoculum diluted in a mineral buffer solution. Generally, a reducing agent such as Na2S or cysteine-HCl generates the required anaerobic environment by releasing metabolites similar to those produced when protein is fermented, possibly inducing a dysbiosis. An experiment was conducted to study the impact of two reducing agents on results yielded by such in vitro fermentation models. Protein (soybean proteins, casein) and carbohydrate (potato starch, cellulose) ingredients were fermented in vitro by bacteria isolated from fresh feces obtained from three sows in three carbonate-based incubation media differing in reducing agent: (i) Na2S, (ii) cysteine-HCl and (iii) control with a mere saturation with CO2 and devoid of reducing agent. The gas production during fermentation was recorded over 72 h. Short-chain fatty acids (SCFA) production after 24 and 72 h and microbial composition of the fermentation broth after 24 h were compared between ingredients and between reducing agents. The fermentation residues after 24 h were also evaluated in terms of cytotoxicity using Caco-2 cell monolayers. Results showed that the effect of the ingredient induced higher differences than the reducing agent. Among the latter, cysteine-HCl induced the strongest differences compared with the control, whereas Na2S was similar to the control for most parameters. For all ingredients, final gas produced per g of substrate was similar (P>0.10) for the three reducing agents whereas the maximum rate of gas production (Rmax) was reduced (P<0.05) when carbohydrate ingredients were fermented with cysteine-HCl in comparison to Na2S and the control. For all ingredients, total SCFA production was similar (P>0.10) after 24 h of fermentation with Na2S and in the control without reducing agent. Molar ratios of branched chain-fatty acids were higher (P<0.05) for protein (36.5% and 9.7% for casein and soybean proteins, respectively) than for carbohydrate (<4%) ingredients. Only fermentation residues of casein showed a possible cytotoxic effect regardless of the reducing agent (P<0.05). Concerning the microbial composition of the fermentation broth, most significant differences in phyla and in genera ascribable to the reducing agent were found with potato starch and casein. In conclusion, saturating the incubation media with CO2 seems sufficient to generate a suitable anaerobic environment for intestinal microbes and the use of a reducing agent can be omitted.  相似文献   

5.
Corn cob hydrolysates, with xylose as the dominant sugar, were fermented to ethanol by recombinant Escherichia coli KO11. When inoculum was grown on LB medium containing glucose, fermentation of the hydrolysate was completed in 163 h and ethanol yield was 0.50 g ethanol/g sugar. When inoculum was grown on xylose, ethanol yield dropped, but fermentation was faster (113 h). Hydrolysate containing 72.0 g/l xylose and supplemented with 20.0 g/l rice bran was readily fermented, producing 36.0 g/l ethanol within 70 h. Maximum ethanol concentrations were not higher for fermentations using higher cellular concentration inocula. A simulation of an industrial process integrating pentose fermentation by E. coli and hexose fermentation by yeast was carried out. At the first step, E. coli fermented the hydrolysate containing 85.0 g/l xylose, producing 40.0 g/l ethanol in 94 h. Baker's yeast and sucrose (150.0 g/l) were then added to the spent fermentation broth. After 8 h of yeast fermentation, the ethanol concentration reached 104.0 g/l. This two-stage fermentation can render the bioconversion of lignocellulose to ethanol more attractive due to increased final alcohol concentration. Journal of Industrial Microbiology & Biotechnology (2002) 29, 124–128 doi:10.1038/sj.jim.7000287 Received 20 February 2002/ Accepted in revised form 04 June 2002  相似文献   

6.
Solid substrate fermentations of some agro-wastes, namely cocoa pod husk (CPH), cassava peel (CP), and palm kernel cake (PKC) were carried out for the production of fructosyltransferase (FTase) by a newly isolated fungal strain Rhizopus stolonifer LAU 07. The fermented substrate were studied for improved nutritional quality by determining the crude protein, crude fibre, ash and lipid contents, and antioxidant activities. The cyanide content of cassava peels was also determined. Some levels of value-addition occured as a result of the fermentation. The protein contents of the substrates increased by 33.3, 55.4, and 94.8%, while the crude fibre contents decreased by 44.5, 8.6, and 7.2% in PKC, CP, and CPH, respectively. The cyanide content of cassava peel was reduced by 90.6%. Generally, fermentation of the substrates by R. stolonifer LAU 07 increased the antioxidant activity in a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. The IC50 (mg/ml) values of the methanolic extracts (fermented/unfermented) were obtained as 7.0/14.9, 4.4/10.6, and 5.5/14.7 mg/ml for PKC, CP, and CPH, respectively. Results herein reported showed that the nutritional qualities and antioxidant activities of all the investigated solid substrates were enhanced by fungal fermentation. Thus, scope exists for microbial upgrading of these low-quality agro-wastes and development of healthy animal feed supplements.  相似文献   

7.
The improved method for preparing Oyokpo a Nigerian fermented beverage from millet, and the preparation of single cell proteins from the spent grain is described. Improvement of the brew was made by controlled malting, mashing and brewing with a pure culture of Saccharomyces cerevisiae. It had a reducing sugar content of 19.73 g/100 ml before fermentation and after fermentation 5.56% alcohol, 0.58 g/100 ml titratable acidity as acetic acid, a final pH of 4.2 and consisted of a yellowish clear liquid, slightly sour. The native brew had a reducing sugar content of 7.37 g/100 ml before fermentation and after fermentation, 2.40% alcohol, 0.43 g/100 ml titratable acidity, a final pH of 3.8 and consisted of a creamy yellowish liquid with a very sour taste. Fermented spent grain gave a higher protein yield compared to unfermented or ground millet. The lipids, proteins and crude fibre were 4.94%, 11.20% and 4.33% respectively for ground millet, 12,79%, 23.77% and 19.46% respectively for unfermented spent grain and 19.61%, 47.28% and 32.09% respectively for fermented spent grain. The high protein and fibre content of the fermented spent grain points to its potential as a feed supplement for ruminants.  相似文献   

8.
Miri  Saba  Hajihosseini  Reza  Saedi  Hamed  Vaseghi  Maryam  Rasooli  Azadeh 《Annals of microbiology》2019,69(13):1507-1515
Context

Fermented soybean products have been used in various ways, and more research is being conducted on them to reveal their benefit.

Objective

The objective of this study was to evaluate the antioxidative activity of fermented soybean meal extract by Lactobacillus plantarum in vitro and in vivo tests.

Materials and methods

A Lactobacillus plantarum strain RM10 was selected through plate and fermentation experiment, which increased the degree of protein hydrolysis (1.015 μg/mL) and antioxidant activity in soybean meal fermented by selected bacteria (FSBM). In vivo study was done on septic rats as an inflammation/infection model, and then the trial groups were treated with different concentrations of fermented soybean meal extracts (FSBM, 5, 10, and 20%).

Results

DPPH radical-scavenging and ferrozine ion-chelating activity enhanced (P < 0.05) after fermentation of soybean meal compared to control group. Reduced (P < 0.05) expression of inflammatory genes and enzymes was detected in the lungs of rats treated with fermented soybean meal extract.

Discussion and conclusions

These results demonstrated that a diet containing fermented soybean meal extract improved extreme inflammatory response in an infectious disease like sepsis by reducing inflammatory factors.

  相似文献   

9.
Aquatic macrophytes such as Elodea nuttalli, Vallisneria natans, Alterranthera philoxerides that are widely distributed in water environments of Lake Taihu basin were used as substrate of solid state fermentation to produce crude protein extraction. The effects of single-strain fermentation and mixed strains fermentation of aquatic macrophytes on the production of crude protein extraction and cellulase activity are analyzed, respectively. The experimental results showed that the crude protein content of products with mixed strains fermentation is higher than that with single-strain fermentation. The crude protein content of V. natans fermented by Aspergillus niger and Candida utilis is the highest among the aquatic macrophytes examined in this study. V. natans is used as the substrate to be fermented by C. utilis and A. niger; their ratio is 1:1 at 28 ± 1 °C for 72 h. The crude protein of fermented V. natans is as high as 49.54%, with 128.82% of its increase rate. The cellulose activity reaches a maximum of 4.21 μ/ml at 84 h of fementation of V. natans. Thus, the solid state fermentation of aquatic macrophytes to produce crude protein extraction is promising, which make aquatic macrophytes a potential resource and thus is beneficial to the long-term ecological restoration of eutrophic lakes.  相似文献   

10.
ABSTRACT

The study was conducted to determine effects of a complex of fibre-degrading enzymes (xylanase, cellulase and β-glucanase) on nutrient digestibility, fibre fermentation and concentrations of short chain fatty acids (SCFA) at different parts of digestive tract in pigs fed different fibre-rich ingredients. A total of 36 barrows fitted with T-cannulas in the distal ileum (initial body weight of 41.1 ± 2.7 kg) were randomly allotted to six dietary treatments with three different high-fibre diets including maize bran (MB), sugar beet pulp (SBP) and soybean hulls (SH) with or without supplementation of fibre-degrading enzymes. Enzyme supplementation improved (p < 0.05) apparent ileal digestibility (AID) of dietary gross energy (GE), crude protein, dry matter (DM), organic matter (OM), total dietary fibre (TDF), neutral detergent fibre (NDF) and apparent total tract digestibility (ATTD) of dietary GE, DM, OM, TDF, insoluble dietary fibre (IDF) when pigs were fed MB, SBP or SH diets. When compared to the SBP and SH diets, the AID of GE, DM, ash, OM and NDF in diet MB was higher (p < 0.05), but the hindgut disappearance and ATTD of nutrients, except for ether extract and crude ash, were lower (p < 0.05). Enzyme supplementation increased acetate and total SCFA concentrations in ileal digesta and faeces of pigs. In conclusion, enzyme addition improved IDF fermentation and SCFA concentration in the whole intestine of pigs, and there was a large variation of digestibility of fibre components among MB, SH and SBP owing to their different fibre composition. Therefore, fibre-degrading enzymes should be applied to fibrous diets to improve efficient production of swine, especially considering low fibre digestibility of fibre-rich ingredients.  相似文献   

11.
Abstract The importance of protein breakdown and amino acid fermentation in the overall economy of the large intestine has not been quantitated. We have therefore measured the production of branched chain-fatty acids (BCFA) both in vitro and in vivo in order to estimate the contribution of protein to fermentation.
In vitro batch-culture studies using human faecal inocula showed that short-chain fatty acids (SCFA) were the principal end products formed during the degradation of protein by human colonic bacteria. Approximately 30% of the protein broken down was converted to SCFA. Branched-chain fatty acids (BCFA) constituted 16% of the SCFA produced from bovine serum albumin and 21% of the SCFA generated when casein was the substrate. BCFA concentrations in gut contents taken from the human proximal and distal colons were on average, 4.6 and 6.3 mmol kg−1 respectively, corresponding to 3.4% and 7.5% of the total SCFA. These results suggest that protein fermentation could potentially account for about 17% of the SCFA found in the caecum, and 38% of the SCFA produced in the sigmoid/rectum. Measurements of BCFA in portal and arterial blood taken from individuals undergoing emergency surgery indicated that net production of BCFA by the gut microflora was in the region of 11.1 mmol day−1, which would require the breakdown of about 12 g of protein. These data highlight the role of protein in the colon and may explain why many colonic diseases affect mainly the distal bowel.  相似文献   

12.
Abstract The importance of protein breakdown and amino acid fermentation in the overall economy of the large intestine has not been quantitated. We have therefore measured the production of branched chain-fatty acids (BCFA) both in vitro and in vivo in order to estimate the contribution of protein to fermentation.
In vitro batch-culture studies using human faecal inocula showed that short-chain fatty acids (SCFA) were the principal end products formed during the degradation of protein by human colonic bacteria. Approximately 30% of the protein broken down was converted to SCFA. Branched-chain fatty acids (BCFA) constituted 16% of the SCFA produced from bovine serum albumin and 21% of the SCFA generated when casein was the substrate. BCFA concentrations in gut contents taken from the human proximal and distal colons were on average, 4.6 and 6.3 mmol kg−1 respectively, corresponding to 3.4% and 7.5% of the total SCFA. These results suggest that protein fermentation could potentially account for about 17% of the SCFA found in the caecum, and 38% of the SCFA produced in the sigmoid/rectum. Measurements of BCFA in portal and arterial blood taken from individuals undergoing emergency surgery indicated that net production of BCFA by the gut microflora was in the region of 11.1 mmol day−1, which would require the breakdown of about 12 g of protein. These data highlight the role of protein in the colon and may explain why many colonic diseases affect mainly the distal bowel.  相似文献   

13.
为了提高PHAMCL在门多萨假单胞菌NK-01中的积累,采用单因素实验和正交实验确立了发酵生产PHAMCL的最佳条件,即以PHA产量为指标的最佳发酵条件为15 g/L葡萄糖浓度、C/N=50、发酵时间48 h,该条件下获得产量0.8 g/L以上的PHA;以PHA占菌体干重百分含量为指标的最佳发酵条件为10 g/L葡萄糖浓度、C/N=60、发酵时间48 h,该条件下获得占菌体干重50%以上的PHA。该研究将为门多萨假单胞菌NK-01用于PHAMCL的规模化生产提供理论依据。  相似文献   

14.
Summary Pelobacter venetianus, a strictly anaerobic bacterium recently isolated with polyethylene glycol (PEG) as substrate, ferments PEG's with molecular masses of 106–40000, as well as acetoin, ethanolamine, choline, and ethoxyethanol, to acetate and ethanol. Ethylene glycol (EG) and acetaldehyde were fermented in the same manner at limiting concentrations in continuous culture. Growth with glycolaldehyde led to acetate as sole fermentation product. Acetaldehyde appeared as byproduct of PEG fermentation, and accumulated to high concentrations during degradation of PEG 4000 and PEG 6000. Utilization of PEG's was constitutive, whereas acetoin degradation was inducible. Acetaldehyde was shown to be the primary product of EG degradation, and inhibited utilization of other substrates. Enzymes involved in the fermentation of PEG, EG, acetoin, and glycolaldehyde were demonstrated in cell-free extracts, except for the PEG degrading enzyme and EG dehydrase. These results demonstrate that acetaldehyde plays a central role in the metabolism of Pelobacter venetianus. A scheme of intermediary metabolism and PEG degradation is discussed.Abbreviations EG ethylene glycol - Di-EG diethylene glycol - PEG (20 000) polyethylene glycol (molecular weight 20 000)  相似文献   

15.
Natto is a traditional Japanese food made from soybeans fermented by strains of Bacillus subtilis natto. It gives off a strong ammonia smell during secondary fermentation, and the biochemical basis for this ammonia production was investigated in this study. When natto was fermented by strain r22, ammonia production was shown to involve degradation of soybean proteins releasing amino acids, and only the glutamate contained in the natto obviously decreased, while the other amino acids increased during secondary fermentation. Strain r22 has two active glutamate dehydrogenase genes, rocG and gudB, and inactivating both genes reduced ammonia production by half, indicating that deamination of glutamate was one of the major ammonia-releasing reactions. In addition, urease encoded by ureABC was found to degrade urea during secondary fermentation. A triple mutant lacking rocG, gudB, and ureC exhibited minimal ammonia production, suggesting that the degradation of urea might be a further ammonia-releasing reaction.  相似文献   

16.
Hydrolysis of isoflavone glycosides by Bacillus subtilis natto NTU-18 in black soymilk is reported. At the concentration of 3–5% (w/v), black soymilk in flask cultures, the isoflavones, daidzin, and genistin were highly deglycosylated within 24 h. Deglycosylation of isoflavones was further carried out in a 7-l fermenter with 5% black soymilk. During the fermentation, viable cells increased from 103 to 109 CFU ml−1 in 15 h, and the activity of β-glucosidase appeared at 8 h after inoculation and reached a maximum (3.3 U/ml) at 12 h, then decreased rapidly. Deglycosylation of isoflavone glycosides was observed at the same period, the deglycosylation rate of daidzin and genistin at 24 h was 100 and 75%, respectively. It is significantly higher than the previous reports of fermentation with lactic acid bacteria. In accordance with the deglycosylation of isoflavone glycosides, the estrogenic activity of the 24 h fermented black soymilk for ERβ estrogen receptor increased to threefold; meanwhile, the fermented broth activated ERα estrogen receptor to a less extent than ERβ. These results suggest that this fermentation effectively hydrolyzed the glycosides from isoflavone in black soymilk and the fermented black soymilk has the potential to be applied to selective estrogen receptor modulator products.  相似文献   

17.
A basic procedure was developed to produce a fermented product by solid substrate fermentation using Rhyzopus oligosporus and chickpea as substrate. Water activity was kept at 0.92 throughout the process. Fermentation increased total, ‘true’ and soluble proteins, soluble solids and soluble carbohydrates, and decreased fiber content and pH. About 12% of solids were lost during 72 h of fermentation. The content of most fatty acids was enhanced by fermentation, whereas peroxide value and tannins declined. The color of the fermented product was not deteriorated after 72 h of fermentation. Scanning electron microscopy studies of microbial growth on the substrate showed penetration of the fungus hyphae and degradation effects on the chickpea cotyledon cells.  相似文献   

18.
ABSTRACT

This in vitro study aimed to evaluate the effects of Yucca schidigera powder (YSP) and inulin (IN) on protein fermentation metabolites (short-chain fatty acids [SCFA] and branched-chain fatty acids, phenolic and indolic compounds, biogenic amines, ammonia and pH) by using faecal inocula from dogs fed either a low (L) or a high (H) protein diet (crude protein 201 or 377 g/kg as fed). Four treatments for each diet were evaluated in an in vitro batch culture system over 24 h: (1) control with no addition of substrates; (2) 4 g YSP/l; (3) 5 g IN/l; (4) 4 g YSP/l in combination with 5 g IN/l of faecal culture of dogs fed Diet L or H. Several changes in fermentation metabolites were analysed. Samples incubated with the faecal inocula of dogs fed Diet L produced higher concentrations of total SCFA, propionate (p = 0.001), acetate (p ≤ 0.001), d-lactate (p = 0.041) and indole (p = 0.003), whereas pH (p = 0.004) was decreased. Supplementation of IN increased the content of putrescine, d- and l-lactate, total SCFA, acetate, propionate, n-butyrate (p ≤ 0.001) and n-valerate (p = 0.003), while i-valerate, indole and pH (p ≤ 0.001) were reduced. Ammonia was lower (p = 0.013) in samples with faecal inocula from dogs fed Diet H and further reduced by the addition of IN (p ≤ 0.001). Samples with faecal inocula from dogs fed Diet L had a fewer quotient of ammonia and total SCFA (p = 0.040). Supplementation of YSP (p = 0.021), IN (p ≤ 0.001) and YSP in combination with IN (p = 0.047) led to a higher reduction of the quotient of ammonia and total SCFA. In conclusion, dietary protein concentration and the supplementation of IN resulted in a stimulation of fermentation while YSP appeared to have only minor effects.  相似文献   

19.
An in vitro model was used to study the fermentation characteristics of carbohydrate fractions of hulless barley (hB), in comparison to hulled barley (HB), hulled oat and oat groats (OG) in the pig intestine. For this purpose, 6 hulless barley cultivars (hB), varying in β-glucan content (36–99 g/kg DM), were compared to 3 HB cultivars, 2 oat groat samples (OG), 3 oat varieties and a reference sample of wheat. The residue of a pepsin–pancreatin hydrolysis was incubated in a buffered mineral solution inoculated with pig faeces. Gas production, proportional to the amount of fermented carbohydrates, was measured for 48 h and kinetics modelled. The fermented solution was subsequently analyzed for microbial production of short-chain fatty acids (SCFA) and ammonia. In vitro dry matter degradability varied according to ingredient (P<0.001). Higher values were observed for OG, ranging from 0.88 to 0.99 as compared to oat, hB and HB, for which degradability ranged from 0.63 to 0.73, 0.68 to 0.80 and 0.69 to 0.71, respectively. A “cereal type” effect (P<0.05) was observed on fermentation kinetics parameters. Total gas production was higher (P<0.05) with hB (224 ml/g DM incubated) than with HB and oat (188 and 55 ml/g DM incubated, respectively). No difference was observed between hB cultivars (P>0.05) for total gas production but differences (P<0.001) were found for lag time and the fractional rate of degradation. Hulless barley cultivar CDC Fibar (waxy starch) and CDC McGwire (normal starch) started to ferment sooner (lag time of 0.7 and 0.9 h, respectively) than SH99250 (high amylose starch; 1.7 h). The fractional rate of degradation was similar in both hB and OG (0.15/h on average), which was higher than that of HB (0.12/h). The production of SCFA was also higher (P<0.05) with hB (6.1 mmol/g DM incubated, on average) than with HB and oat (4.9 and 2.9 mmol/g DM incubated, respectively). Similar trends were found for SCFA production expressed per g fermented carbohydrates, with higher butyrate and lower acetate ratio. In contrast, oat fermentation generated higher (P<0.05) ammonia concentration (1.4 mmol/g DM incubated, on average) than hB (1.0 mmol/g DM incubated). In summary, hulless barleys, irrespective of cultivar type had higher in vitro fermentability and produced more SCFA and less ammonia than hulled barley and oat. Thus, hulless barleys have a better potential to be used in pig nutrition to manipulate the fermentation activity in the intestine of pigs.  相似文献   

20.

Aims

To evaluate the interaction between selected yeasts and bacteria and associate their metabolic activity with secondary cucumber fermentation.

Methods and Results

Selected yeast and bacteria, isolated from cucumber secondary fermentations, were inoculated as single and mixed cultures in a cucumber juice model system. Our results confirmed that during storage of fermented cucumbers and in the presence of oxygen, spoilage yeasts are able to grow and utilize the lactic and acetic acids present in the medium, which results in increased brine pH and the chemical reduction in the environment. These conditions favour opportunistic bacteria that continue the degradation of lactic acid. Lactobacillus buchneri, Clostridium bifermentans and Enterobacter cloacae were able to produce acetic, butyric and propionic acids, respectively, when inoculated in the experimental medium at pH 4·6. Yeast and bacteria interactions favoured the survival of Cl. bifermentans and E. cloacae at the acidic pH typical of fermented cucumbers (3·2), but only E. cloacae was able to produce a secondary product.

Conclusions

The methodology used in this study confirmed that a complex microbiota is responsible for the changes observed during fermented cucumber secondary fermentation and that certain microbial interactions may be essential for the production of propionic and butyric acids.

Significance and Impact of the Study

Understanding the dynamics of the development of secondary cucumber fermentation aids in the identification of strategies to prevent its occurrence and economic losses for the pickling industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号