首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose self-exchange flux (Jex) and net efflux (Jnet) in human red cells and ghosts were studied at 25 degrees C and pH 7.2 by means of the combined use of the Millipore-Swinnex filtering method and the continuous flow tube method to show the dependence of time of storage after aspiration, ATP and insulin. In fresh cells (RBC), ghosts (G), ghosts with 2 mM ATP (G +), and cells stored at 4 degrees C greater than 60 days (OC) both Jex and Jnet follow simple Michaelis-Menten kinetics where J = Jmax X Ci X (K1/2 + Ci)-1. Jmaxex and Jmaxnet (nmol X cm-2 X s-1), respectively, was: (RBC) 0.27 and 0.19, (G) 0.24 and 0.27, (G +) 0.23 and 0.24, (OC) 0.23 and 0.20. K1/2,ex and K1/2,net (mM), respectively, was: (RBC) 7.5 and 1.3, (G) 4.8 and 14.2, (G +) 11.6 and 6.8, (OC) 3.8 and 9.0. In ghosts, the ATP-dependent fraction of the permeability shows a hyperbolic dependence on glucose concentrations lower than 80 mM. Insulin up to 1 microM had effect on neither Jex nor Jnet in RBC. Based on reported values of cytochalasin B binding sites the turnover rate per site in RBC appears to be as high as in maximally insulin-stimulated fat cells. Our results suggest that the number of transport sites remains constant, independent of age, ATP and insulin.  相似文献   

2.
Ion and acid–base balance were examined in the freshwater-adapted mummichog (Fundulus heteroclitus) using a series of treatments designed to perturb the coupling mechanisms. Unidirectional Cl uptake (JClin) was extremely low whereas JNain was substantial (three- to sixfold higher); comparable differences occurred in unidirectional efflux rates (JClout, JNaout). JClin was refractory to all treatments, suggesting that Cl/base exchange was unimportant or absent. Indeed, no base excretion or modulation of ion fluxes occurred for acid–base balance for up to 8 h after NaHCO3 loading (injections of 1000 or 3000 nequiv.·g−1). Acute environmental low pH (4.5) and amiloride (10−4 M) treatments caused concurrent inhibition of JNain and net H+ excretion (JH+net), indicating the presence of Na+/H+ exchange. JNain was elevated and JH+net restored during recovery from both treatments, but this exchange did not appear to be dynamically adjusted for acid–base homeostasis. High external ammonia exposure (1 mmol·l−1) initially blocked ammonia excretion (JAmmnet) but had no effect on JNain, whereas high pH (9.4) reduced both JAmmnet and JNain. Inhibition of JNain by the low pH and amiloride treatments had no effect on JAmmnet. These results indicate that ammonia excretion is entirely diffusive and independent of both Na+uptake and the protons that are transported via the Na+/H+ coupling. In addition, ureagenesis served as a compensatory mechanism during high external ammonia exposure, as a marked elevation in urea excretion partially replaced the inhibited JAmmnet. In all treatments, changes in the Na+–Cl net flux differential were consistent with changes in JH+net measured by traditional water titration techniques, indicating that the former can be used as an estimate of the acid–base status of the fish. Overall, the results demonstrate that the freshwater-adapted F. heteroclitus does not conform to the ion/acid–base relationships described in the standard model based on commonly studied species such as trout, goldfish, and catfish.  相似文献   

3.
We measured Na+/K+ ATPase activity in homogenates of gill tissue prepared from field caught, winter and summer acclimatized yellow perch, Perca flavescens. Water temperatures were 2–4°C in winter and 19–22°C in summer. Na+/K+ ATPase activity was measured at 8, 17, 25, and 37°C. Vmax values for winter fish increased from 0.48±0.07 μmol P mg−1 protein h−1 at 8°C to 7.21±0.79 μmol P mg−1 protein h−1 at 37°C. In summer fish it ranged from 0.46±0.08 (8°C) to 3.86±0.50 (37°C) μmol P mg−1 protein h−1. The Km for ATP and for Na+ at 8°C was ≈1.6 and 10 mM, respectively and did not vary significantly with assay temperature in homogenates from summer fish. The activation energy for Na+/K+ ATPase from summer fish was 10 309 (μmol P mg−1 h−1) K−1. In winter fish, the Km for ATP and Na+ increased from 0.59±0.08 mM and 9.56±1.18 mM at 8°C to 1.49±0.11 and 17.88±2.64 mM at 17°C. The Km values for ATP and Na did not vary from 17 to 37°C. A single activation energy could not be calculated for Na/K ATPase from winter fish. The observed differences in enzyme activities and affinities could be due to seasonal changes in membrane lipids, differences in the amount of enzyme, or changes in isozyme expression.  相似文献   

4.
Lumen to bath J 12/C 1 and bath to lumen J 21/ C 2 fluxes per unit concentration of 19 probes with diameters (d m) ranging from 3.0–30.0 Å (water, urea, erythritol, mannitol, sucrose, raffinose and 13 dextrans with d m 9.1–30.0 Å) were measured during volume secretion (J v ) in the upper segment of the Malpighian Tubule of Rhodnius by perfusing lumen and bath with 14C or 3H-labeled probes. J net=(J 12/C 1J 21/C 2) was studied as a function of J v · J v was varied by using different concentrations of 5-hydroxy tryptamine. J net for 3H-water was not different from J v We found: (i) A strong correlation between J net and J v for 8 probes d m =3.0–11.8 Å (group a probes), indicating that the convective component of J net is more important than its diffusive component and than unstirred layers effects which are negligible. Therefore group a probes are solvent dragged as they cross the epithelium, (ii) There is no correlation between J net and J v for 11 probes with d m=11.8–30 Å (group b). Therefore these probes must cross the epithelium by diffusion and not by solvent drag, (iii) In a plot of J net/J v vs. d m group a probes show a steep linear relation with a slope = –0.111, while for group b probes the slope is –0.002. Thus there is a break between groups a and b in this plot. We tried to fit the data with models for restricted diffusion and convention through cylindrical or parallel slit pathways. We conclude that (i) group a probes are dragged by water through an 11.0 Å-wide slit, (ii) Most of J v must follow an extracellular noncytosolic pathway, (iii) Group b probes must diffuse through a 42 Å-wide slit, (iv) A cylindrical pathway does not fit the data.E.G. is a Visiting Scientist at IVIC. It is a pleasure to thank Drs. A.E. Hill and Bruria Shachar-Hill for their suggestion of the use of dextrans, their instruction and help with the dextran separation technique, and their extensive discussions. Dr. R. Apitz, Mr H. Rojas and Mrs. Fulvia Bartoli were most helpful with suggestions during the course of the experimental work. Mr. Jose Mora was fundamental help with the equipment. Mrs. Lelis Ochoa and Mr. Luis F. Alvarez helped with some of the drawings. This work was partially supported by CONICIT, Fundación Polar and CDCH of UCV. It is a pleasure to thank Dr. H. Passow and Dr. K.J. Ullrich at the Max Planck Institut für Biophysik (Frankfurt/Main) where this work was initiated.  相似文献   

5.
The kinetic parameters of net exit of d-glucose from human red blood cells have been measured after the cells were loaded to 18 mM, 75 mM and 120 mM at 2°C and 75 mM and 120 mM at 20°C. Reducing the temperature, or raising the loading concentration raises the apparent Km for net exit. Deoxygenation also reduces the Km for d-glucose exit from red blood cells loaded initially to 120 mM at 20°C from 32.9 ± 2.3 mM (13) with oxygenated blood to 20.5 ± 1.3 mM (17) (P<0.01). Deoxygenation increases the ratio Vmax/Km from 5.29 ± 0.26 min−1 (13) for oxygenated blood to 7.13 ± 0.29 min−1 (17) for deoxygenated blood (P < 0.001). The counterflow of d-glucose from solutions containing 1 mM 14C-labelled d-glucose was measured at 2°C and 20°C. Reduction in temperature, reduced the maximal level to which labelled d-glucose was accumulated and altered the course of equilibration of the specific activity of intracellular d-glucose from a single exponential to a more complex form. Raising the internal concentration from 18 mM to 90 mM at 2°C also alters the course of equilibration of labelled d-glucose within the cell to a complex form. The apparent asymmetry of the transport system may be estimated from the intracellular concentrations of labelled and unlabelled sugar at the turning point of the counterflow transient. The estimates of asymmetry obtained from this approach indicate that there is no significant asymmetry at 20°C and at 2°C asymmetry is between 3 and 6. This is at least 20-fold less than predicted from the kinetic parameter asymmetries for net exit and entry. None of the above results fit a kinetic scheme in which the asymmetry of the transport system is controlled by intrinsic differences in the kinetic parameters at the inner and outer membrane surface. These results are consistent with a model for sugar transport in which movement between sugar within bound and free intracellular compartments can become the rate-limiting step in controlling net movement into, or out of the cell.  相似文献   

6.
Calcium efflux has been studied in barnacle muscle fibres under internal dialysis conditions. Prolonged dialysis of these fibres, with a medium free of ATP and containing 2 mM cyanide and 1 mM iodoacetate, causes the ATP in the perfusion effluent to fall to less than 20 μM. The mean calcium efflux from fibres dialyzed with EGTA buffered solution containing 0.3 μM ionized Ca and no ATP is 0.6 pmol · cm−2 · s−1. A two-fold stimulation of the calcium efflux is observed when ATP is added to fibres previously dialyzed with an ATP-free medium. Withdrawal of Na+ and Ca2+ from the external medium causes a marked drop in the Ca2+ efflux in the presence of internal ATP.  相似文献   

7.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

8.
Summary Unidirectional fluxes of35SO4 across and into rabbit ileal epithelium were measured under short-circuit conditions, mostly at a medium SO4 concentration of 2.4mm. Unidirectional mucosa (m)-to-serosa (s) ands-to-m fluxes (J ms,J sm) were 0.456 and 0.067 moles hr–1 cm–2, respectively.J ms was 2.7 times higher in distal ileum than in mid-jejunum. Ouabain abolished net SO4 transport (J net) by reducingJ ms. Epinephrine, a stimulus of Cl absorption, had no effect on SO4 fluxes. Theophylline, a stimulus of Cl secretion, reducedJ ms without affectingJ sm, causing a 33% reduction inJ net. Other secretory stimuli (8-Br-cAMP, heat-stable enterotoxin, Ca-ionophore A23187) had similar effects. Replacement of all Cl with gluconate markedly reducedJ net through both a decrease inJ ms and an increase inJ sm. The anion-exchange inhibitor, 4-acetoamido-4-isothiocyano-2,2-sulfonic acid stilbene (SITS), when added to the serosal side, reducedJ ms by 94%, nearly abolishingJ net. SITS also decreasedJ sm by 75%. Mucosal SITS (50 m) was ineffective. 4,4-diisothiocyano-2,2-sulfonic acid stilbene (DIDS) had effects similar to SITS but was less potent. Measurements of initial rates of epithelial uptake from the luminal side (J me) revealed the following: (1)J me is a saturable function of medium concentration with aV max of 0.94 moles hr–1 cm–2 and aK 1/2 of 1.3mm; (2) replacing all Na with choline abolishedJ me; (3) replacing all Cl with gluconate increasedJ me by 40%; (4) serosal SITS had no effect onJ me; and (5) stimuli of Cl secretion had no effect onJ me or increased it slightly. Determination of cell SO4 with35SO4 indicated that, at steady-state, the average mucosal concentration is 1.1 mmoles per liter cell water, less than half the medium concentration. Cell SO4 was increased to 3.0mm by adding SITS to the serosal side. Despite net transport rates greater than 1.4 Eq hr–1 cm–2, neither addition of SO4 to the SO4-free medium nor addition of SITS to SO4-containing medium altered short-circuit current. The results suggest that (1) ileal SO4 absorption consists of Na-coupled influx (symport) across the brush border and Cl-coupled efflux (antiport) across the basolateral membrane; (2) the overall process is electrically neutral; (3) the medium-to-cell Cl concentration difference may provide part of the driving force for net SO4 absorption; and (4) since agents affecting Cl fluxes (both absorptive and secretory) have little effect on SO4 fluxes, the mechanisms for their transcellular transports are under separate regulation.  相似文献   

9.
We have studied β-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5–8 nmol/min per ml ghosts are remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (±)-isoprenaline from 0.1 to 0.6 μM. The apparent dissociation constant for propranolol (0.01 μM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identi The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal β-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 μM. GTP stimulated iosprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3–5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 μM. Ca2+ concentrations up to 4.6 μM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native β-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

10.
Summary The unidirectional influx of Na from the mucosal solution into the epithelium ofin vitro descending rabbit colon (J me Na ) determined under short-circuit conditions, is comprised of two components: one represents entry of Na into transporting epithelial cells and is abolished by amiloride which also abolishes Na absorption (J net Na ). The other represents diffusional Na entry into paracellular pathways traversing the epithelium. In all instances, exposure of the mucosal surface to amphotericin B increased tissue conductance andJ me Na and elicited K secretion. Tissues showing a spontaneousI sc of approximately 4 eq/cm2hr did not respond to amphotericin B with increasedI sc andJ net Na . However, in tissues characterized by a lowerI sc under control conditions, amphotericin B increasedI sc andJ net Na to approximately 4eq/cm2hr. These findings suggest that amphotericin increasesJ net Na and elicits K secretion by disrupting the normal permselectivity of the mucosal membrane. Under these conditions the extrusion of Na from cell-to-serosal solution becomes the rate limiting step in transepithelial Na transport. Finally, a close correlation betweenJ me Na andJ net Na was observed when the rate of Na absorption varied either spontaneously or experimentally with amiloride, suggesting that the backflux of Na from cell-to-mucosal solution is undetectably small.  相似文献   

11.
Changes in guanosine cyclic 3′,5′-monophosphate associated with adenosine cyclic 3′,5′-monophosphate and folic acid addition in the presence of ATP have been examined in Dictyostelium discoideum. Preincubation with 1 mM ATP had no effect on the basal cyclic GMP level but increased the cycli GMP accumulation in response to cylci AMP (5·10−8 M) or folic acid (5·10−6 M) 40–50%. ATP could not be replaced by ADP of 5′-adenylyliminodiphosphate. Because ATP has no effect on cyclic AMP receptor binding these results indicate that structural membrane alterations (e.g. membrane phosphorylation) may control the transduction of a chemotactic signal.  相似文献   

12.
Ehrlich ascites carcinoma cells depleted of K+ and provided with 5.5 mM K+ in isosmotic 50 mM tris(hydroxymethyl)methylglycine buffer at pH 7.4 and 38 °C take up K+ from the medium at a rate of 6 μmoles/ml intracellular fluid per min. Depleted cells exposed to K+ for 2 min prior to glucose addition exhibit a higher initial rate of glycolysis, a lower glycose-6-P accumulation, and a higher fructose-1,6-P2 accumulation than depleted cells incubated in a K+-free medium. Both the K+ transport and the effect of K+ on glycolysis are blocked by 2 mM oubain.Calculation of thein vitro velocities of glycolytic enzymes from the rates of accumulation of lactate and glycolytic intermediates shows that the presence of K+ accelerates the velocities of fructose-6-phosphate kinase and lactate dehydrogenase about 2-fold and the velocity of hexokinase about 1.5-fold during the first 15 s. In either the presence or absence of K+, the hexokinase velocity is highest immediately after glucose addition and declines sharply with time; this decline is greater than would be predicted by product inhibition by the accumulated glucose-6-P. The maximal stimulation of fructose-6-phosphate kinase attibutable to the increasing intarcellular K+ concentration is only 1.25-fold. These observations indicate that the initial acceleration in glycolysis is not simply mediated through a direct K+ activation of fructose-6-phosphate kinase.The calculated theoretical rate of ATP generation by glycolysis shows that glycolysis is an ATP-utilizing system for the first 5–10 s both in the presence and in the absence of K+. Hence, the initial stimulation of glycolysis by K+ is not a consequence of an increased rate of ATP hydrolysis associated with K+ transport, although this mechanism may be responsible for the stimulation of steady-state glycolysis.The initial rate of phosphate ester (hexose and triose phosphates) accumulation corresponds to be rate of ATP generation by the “tail-end” of glycolysis, or twice the rate of lactate accumulation, in either the absence or presence of K+, but both the rate and the maximal level of ester accumulated are higher in the presence of K+. This implies that the oxidatively generated pool of ATP which is diverted from endogenous reactions to hexokinase and fructose-6-phosphate kinase on the introduction of glucose is larger in the presence of K+.Valinomycin (0.27 μM) under certain conditions can produce effects on the glycolysis of non-depleted cells which superficially resemble the effects of K+ on depleted cells. However, unlike K+, valinomycin stimulates the initial rate of glycolytic ATP generation, and abolishes the initial correspondence between the ATP generation by the “tail-end” of glycolysis and phosphate ester accumulation. These observations are interpreted to mean that valinomycin introduces an ATPase activity effective on glycolytically generated ATP.Comparison of the theoretical ATP generation in the presence and absence of K+ indicates that approximately one ATP is hydrolyzed for each K+ transported.  相似文献   

13.
The NAD-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.2) fromLaccaria bicolorwas purified 410-fold to apparent electrophoretic homogeneity with a 40% recovery through a three-step procedure involving ammonium sulfate precipitation, anion-exchange chromatography on DEAE–Trisacryl, and gel filtration. The molecular weight of the native enzyme determined by gel filtration was 470 kDa, whereas sodium dodecyl sulfate–polyacrylamide gel electrophoresis gave rise to a single band of 116 kDa, suggesting that the enzyme is composed of four identical subunits. The enzyme was specific for NAD(H). The pH optima were 7.4 and 8.8 for the amination and deamination reactions, respectively. The enzyme was found to be highly unstable, with virtually no activity after 20 days at −75°C, 4 days at 4°C, and 1 h at 50°C. The addition of ammonium sulfate improved greatly the stability of the enzyme and full activity was still observed after several months at −75°C. NAD-GDH activity was stimulated by Ca2+and Mg2+but strongly inhibited by Cu2+and slightly by the nucleotides AMP, ADP, and ATP. The Michaelis constants for NAD, NADH, 2-oxoglutarate, and ammonium were 282 μM, 89 μM, 1.35 mM, and 37 mM, respectively. The enzyme had a negative cooperativity for glutamate (Hill number of 0.3), and itsKmvalue increased from 0.24 to 3.6 mM when the glutamate concentration exceeded 1 mM. These affinity constants of the substrates, compared with those of the NADP-GDH of the fungus, suggest that the NAD-GDH is mainly involved in the catabolism of glutamate, while the NADP-GDH is involved in the catalysis of this amino acid.  相似文献   

14.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

15.
Escherihica coliumC122::Tn5 cells were γ-radiated (137Cs, 750 Gy, under N2), and lac-constitutive mutants were produced at 36% of the wild-type level (the umC strain was not deficient in spontaneous mutagenesis, and the mutational spectrum determined by sequencing 263 spontaneous lacId mutations was very similar to that for the wild-type strain). The specific nature of the umC strain's partial radiation was determined by sequencing 325 radiation-induced lacId mutations. The yields of radiation-induced mutation classes in the umC strain (as a percentage of the wild-type yield) were: 80% for A · T → G · C transitions, 70% for multi-base additions, 60% for single-base deletions, 53% for A · T → C · G transversions, 36% for G · C → A · T transitions, 25% for multi-base deletions, 21% for A · T → T · A transversions, 11% for G · C → C · G transversions, 9% for G · C → T · A transversions and 0% for multiple mutations. Based on these deficiencies and other factors, it is concluded that the umC strain is near-normal for A · T → G · C transitions, single-base deletions and possibly A · T → C · G transversions; is generally deficient for mutagenesis at G · C sites fro transversions, and is grossly deficient in multiple mutations. Damage at G · C sites seems more difficult for translesion DNA synthesis to bypass than damage at A · T sites, and especially when trying to produced a transversion. The yield of G · C → A · T transitions in the umC strain *36% of the wild-type level) argues that a basic sites are involved in no more than 64% of γ-radiation-induced base substitutions in the wild-type strain. Altogether, these data suggest that the UmuC and UmuD′ proteins facilitate, rather than being absolutely required for, translesion DNA synthesis; with the degree of facilitation being dependent both on the nature of the noncoding DNA damage, i.e., at G · C vs A · T sites, and on the nature of the misincorporated base, i.e., whether it induces transversions or transitions.  相似文献   

16.
The efficiency of a preservation medium, histidine-buffered lactobionate solution (HBLS), was determined by measuring post-ischemic recoveries of ATP and intracellular pH under Krebs-Henseleit buffer (KHB) perfusion. We used NMR spectroscopy to study the effect of 24-h cold ischemia, followed by 4°C then 37°C reperfusion on the isolated rat liver. Three media were compared: University of Wisconsin solution (UW-lactobionate); Bretschneider's solution (HTK); HBLS and HBLS supplemented with 2 mM Gly and 2 mM Cys (HBLSg2) or with 10 mM Gly and 2 mM Cys (HBLSg10). All values were compared to control values measured during pre-ischemic cold perfusion with KHB (ATP = 8.60 ± 0.6 μmol/g of dry weigh and pHin = 7.41 ± 0.05). The main result from 31p NMR data concerned ATP recovery during cold reperfusion, which was significantly higher in the HBLS group (112 ± 10%) as compared to the UW and HTK groups (around 66%). The presence of glycine decreased ATP recovery (88 ± 8% in HBLSg2, 79 ± 15% in HBLSg10). Higher values of recovered pHin were observed in livers stored in histidine buffered solutions (around 7.30) as compared to UW (around 7.20); histidine was by 13C NMR proved to accumulate in the liver cells, thus ensuring a good buffering capacity. The thermal transition induced a decrease in both ATP level and pHin in all groups. This might be the result of a stimulation of the carbohydrate metabolism (as demonstrated by 13C NMR) especially when glycine was present in the storage solution.  相似文献   

17.
Summary Nitrite in the external freshwater medium was found to be toxic to Pacifastacus leniusculus Dana (48 h LC500.7 mM NO 2 ). It produced significant changes in haemolymph ionic concentration and acid-base status. Exposure to 1.0 mM NO 2 resulted in a rapid, active accumulation of nitrite in the haemolymph (to 25 mM NO 2 after 24 h) and caused the partial inhibition of Cl uptake. Some reduction in Cl efflux rate was seen. In 1.0 mM NO 2 a rapid depletion of haemolymph [Cl] was observed (50 mM decrease in 27 h). Nitrite competitively inhibited active Cl uptake (Km increased from 0.42 to 1.22 mM; Ki=0.45 mM). To achieve Cl balance in this medium, depleted crayfish would require a two-fold increase in external [Cl]. A lesser decrease in haemolymph [Na+] was found while osmotic pressure was relatively unaffected. Haemolymph [HCO 3 ] showed a significant increase and was accompanied, unexpectedly, by an acidosis. Possible sources of the excess HCO 3 , perhaps by inhibition of normal Cl/HCO 3 branchial exchange or release from CaCO3 stores, are discussed. Haemolymph clearance of NO 2 was slower than uptake as was the restoration of [Cl] on recovery in nitrite-free medium.Abbreviations AFWM artificial freshwater medium - BOD biochemical oxygen demand - J out Cl chloride efflux - J in Cl chloride influx - J in Cl chloride influx - J net base net base flux - J net base net base flux - J in(p) Cl passive chloride influx - J out efflux - LC 50 median lethal concentration - NEDE N-1-Naphthylethylenediamine - SEM standard error of mean - TEP transepithelial potential difference - V in Cl active chloride uptake  相似文献   

18.
The effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee were examined in the laboratory. Exposed to 45 different combinations of temperature (10–30 °C) and salinity (0–40) under saturating irradiance, G. instriatum exhibited its maximum growth rate of 0.7 divisions/day at a combination of 25 °C and a salinity of 30. Optimum growth rates (>0.5 divisions/day) were observed at temperatures ranging from 20 to 30 °C and at salinities from 10 to 35. The organism could not grow at ≤10 °C. In addition, G. instriatum burst at a salinity of 0 at all temperatures, but grew at a salinity of 5 at temperatures between 20 and 25 °C. It is noteworthy that G. instriatum is a euryhaline organism that can live under extremely low salinity. Factorial analysis revealed that the contributions of temperature and salinity to its growth of the organism were almost equal. The irradiance at the light compensation point (I0) was 10.6 μmol/(m2 s) and the saturated irradiance for growth (Is) was 70 μmol/(m2 s), which was lower than Is for several other harmful dinoflagellates (90–110 μmol/(m2 s)).  相似文献   

19.
Summary To estimate the advantage of the small red blood cells (RBC) of high-altitude camelids for O2 transfer, the kinetics of O2 uptake into and release from the RBC obtained from llama, vicuña and alpaca were investigated at 37°C with a stopped-flow technique. O2 transfer conductance of RBC (G) was estimated from the rate of O2 saturation change and the corresponding O2 pressure difference between medium and hemoglobin. For comparison, O2 kinetics for the RBC of a lowaltitude camelid (dromedary camel) and the pygmy goat were determined and previously measured values for human RBC were used. O2 transfer of RBC was found to be strongly influenced by extracellular diffusion, except with O2 release into dithionite solutions of sufficiently high concentration (>30 mM). TheG values measured in these standard conditions,G st (in mmol · min–1 · Torr–1 · (ml RBC)–1) were: high-altitude camelids, 0.58 (averaged for llama, alpaca and vicuña since there were no significant interspecific differences); camel 0.42; goat, 0.42; man, 0.39. The differences can in part be attributed to expected effects of the size and shape of the RBC (volume, surface area, mean thickness), as well as to the intracellular O2 diffusivity which depends on the concentration of cellular hemoglobin. The highG st of RBC of highaltitude camelids may be considered to enhance O2 transfer in lungs and tissues. But the O2 transfer conductance of blood, , equal toG st multiplied by hematocrit (in mmol · min–1 · Torr–1 · (ml blood)–1), was only slightly higher as compared to other species: 0.20 (llama, alpaca, vicuña), 0.14 (camel), 0.18 (goat), 0.17 (man).Abbreviations DPG 2,3-diphosphoglycerate - G conductance - Hb hemoglobin - RBC red blood cells - percent saturation of hemoglobin  相似文献   

20.
A vasoactive intestinal peptide-sensitive adenylate cyclase in intestinal epithelial cell membranes was characterized. Stimulation of adenylate cyclase activity was a function of vasoactive intestinal peptide concentration over a range of 1 · 10−10−1 · 10−7 M and was increased six-times by a maximally stimulating concentration of vasoactive intestinal peptide. Half-maximal stimulation was observed with 4.1 ± 0.7 nM vasoactive intestinal peptide. Fluoride ion stimulated adenylate cyclase activity to a higher extent than did vasoactive intestinal peptide. Under standard assay conditions, basal, vasoactive inteetinal peptide- and fluoride-stimulated adenylate cyclase activities were proportional to time of incubation up to 15 min and to membrane concentration up to 60 μg protein per assay. The vasoactive intestinal peptide-sensitive enzyme required 5–10 mM Mg2+ and was inhibited by 1 · 10−5 M Ca2+. At sufficiently high concentrations, both ATP (3 mM) and Mg2+ (40 mM) inhibited the enzyme.Secretin also stimulated the adenylate cyclase activity from intestinal epithelial cell membranes but its effectiveness was 1/1000 that of vasoactive intestinal peptide. Prostaglandins E1 and E2 at 1 · 10−5 M induced a two-fold increase of cyclic AMP production. Vasoactive intestinal peptide was the most potent stimulator of adenylate cyclase activity, suggesting an important physiological role of this peptide in the cyclic AMP-dependent regulation of the intestinal epithelial cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号