首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detecting sensitivities of different-sized gold particles were compared in the localization of atrial natriuretic peptide (ANP) in rat atria. The secondary antibodies were goat antirabbit labeled with 5, 15, 30, or 40 nm colloidal gold diluted 1:2 to 1:100 in Tris buffer. The relative quantity of alpha-ANP immunoreactivity in specific granules was determined by subtracting the number of gold particles in 1 micron 2 nongranule area from that in 1 micron 2 granule area measured with a computerized image analyzer. The optimal dilution that achieved the maximal contrast between specific and background label was influenced by the particle size. Optimal dilutions were 1:80, 1:30, 1:20, and 1:5 for 5, 15, 30, and 40 nm gold, respectively. At optimal dilutions, the maximal detecting sensitivity (MDS) was in inverse proportion to the gold particle size; however, this relationship is not entirely linear. The ratio among the MDSs of 5, 15, 30, and 40 nm gold particles was approximately 34:9:3:2. A double immunogold staining was performed to localize alpha- and beta-ANPs with 15 and 5 nm gold, respectively. Both antigens were detected in the same granules. If the ratios established from the single staining data were used, the ratio between the alpha- and the beta-ANP antigens in the same granules was approximately 2.8:1. The data obtained in this study provide a useful reference for applications of immunogold electron microscopy in a quantitative manner, particularly for double immunogold labeling.  相似文献   

2.
Barley stripe mosaic virus particles were localized in ultrathin sections with colloidal gold-labeled specific IgG or antiserum followed by gold-labeled goat anti-rabbit IgG. On the average, 1.5 gold particles were attached per virus rod. A statistical analysis of counts of gold and virus particles showed that the staining procedure was highly reproducible from experiment to experiment and after several independently prepared colloidal gold solutions. The procedure should be useful for the intracellular localization of any protein to which an antibody can be prepared.  相似文献   

3.
Colloidal gold immunostaining on deplasticized ultra-thin sections   总被引:1,自引:0,他引:1  
We localized tissue antigens on ultra-thin sections by deplasticizing the sections while on the grid, incubating in primary antiserum followed by immunoglobulin-conjugated colloidal gold, and ultimately re-embedding in dilute Epon. This procedure permitted ultrastructural localization of tissue antigens that were previously masked by the embedding plastic surrounding tissue components. In addition, replacement of the plastic matrix on the thin section after immunostaining prevented development of the drying artifacts that occur in unsupported tissue sections. Optimal preservation of components in the tissue sections was achieved despite extensive steps involved in plastic removal and immunostaining. This method may be useful in situations where the number of exposed epitopes on the surface of a thin section is low. The procedure also allows the use of antisera at greater dilutions and provides enhanced immunostaining specificity with low background.  相似文献   

4.
The requirement of using homologous antisera (primary antiserum and peroxidase-antiperoxidase (PAP) complex raised in the same species) in the unlabeled antibody enzyme method has been investigated at the light and electron microscopic level using the localization of insulin, glucagon and growth hormone as model systems. Optimum immunocytochemical staining for all three antigens was observed when sheep or goat antirabbit gamma-globulin (S-ARgammaG or G-ARgammaG) were used to couple rabbit peroxidase-antiperoxidase complex with either guinea pig antisera to insulin (GP-AIS) or glucagon (GP-AGS), or monkey antisera to rat growth hormone (M-ARGH). The cross-reactivity between S-ARgammaG or G-ARgammaG and immunoglobulins in these primary antisera were substantiated by immunoelectrophoresis and radioimmunoassay. S-ARgammaG was shown to produce precipitation arcs with GP-AIS and M-ARGH that were similar to those seen when the latter were reacted with rabbit antiguinea pig gamma-globulin antiserum and goat antimonkey gamma-globulin antiserum, respectively. Radioimmunoassay results revealed that immunoprecipitation of 6-10% as compared to homologous antisera controls yielded excellent staining localization when S-ARgammaG was used for immunocytochemistry. Thus, heterologous antisera (primary antiserum and PAP complex raised in different species) may be used in the unlabeled antibody enzyme method as long as the coupling antiserum shows cross-reactivity with immunoglobulins of the primary antiserum and the PAP complex.  相似文献   

5.
The purpose of this study was to evaluate the use of protein AG tagged with colloidal gold as a reliable immunocytochemical reagent. Protein AG is a recombinant of 47.3 KD molecular weight and pI = 4.3, which displays immunoglobulin Fc binding sites for both staphylococcal protein A and streptococcal protein G. It adsorbs to 10-nm colloidal gold particles with a lower affinity than does protein A, and is saturable. A maximal number of 12 protein AG molecules could be accommodated on the gold particle surface. Protein AG-gold conjugates yielded positive signals in post-embedding immunocytochemical assays when used as a secondary reagent in conjunction with several species and classes of polyclonal (rabbit, goat, sheep, guinea pig) and mouse monoclonal immunoglobulins (IgG1, IgG2, and IgG3). In addition, protein AG-gold was found to be a useful reagent in immunoblot analysis because of its ability to bind and identify nitrocellulose-immobilized IgGs (rabbit, mouse, goat, sheep, rat, and cow). Its spectrum of specificity towards various types of antibodies combines those of the parental protein A and protein G molecules. The protein AG-gold complex therefore appears to be a highly versatile and convenient alternative probe for immunochemical and immunocytochemical studies.  相似文献   

6.
A method is described for the adsorption of selected macromolecules to colloidal gold which is then used as an electron dense marker for the indirect detection of specific cell surface molecules. Membrane bound concanavalin A, which binds specific sugars on horseradish peroxidase, and wheat germ agglutinin, which binds specific sugars on ovomucoid are detected indirectly with gold labeled horseradish peroxidase and ovomucoid, respectively. Goat anti-human IgM on blood lymphocytes is detected with gold labeled rabbit anti-goat IgG. In the preparation of colloidal gold labeled proteins, the problems of flocculation of colloidal gold by proteins and nonadsorption of proteins to colloidal gold, are solved through a combination of concentration of protein and pH variable adsorption isotherms, which allows one to determine the conditions for adsorption of proteins to colloidal gold. Adsorption is pH dependent, the pH conditions correlating with the isoelectric point(s) of the major protein fraction(s); adsorption is influenced by interfacial tension, solubility and by the electrical charge on the molecules. Colloidal gold is inexpensive and preparation of a useful label is rapid, reproducible and the results easily quantitated from electron micrographs.  相似文献   

7.
Colloidal gold particles of different size (3-20 nm in diameter) were prepared by tannic acid-citrate and citrate reduction methods. From these colloids, different probes were prepared using sheep anti-rabbit antiserum, sheep anti-rabbit IgG, bovine serum albumin, polyethylene glycol, and protein A as the primary stabilizers and polyethylene glycol and/or bovine serum albumin as secondary and tertiary stabilizers, in different combinations. The probes were analyzed by isoelectric focusing in agarose gels, which allow the migration of particles in the size range 3-20 nm. (P. Sewer and S. J. Hayes, 1986, Anal. Biochem. 158, 72-78). Isoelectric focusing revealed that the surface charge of colloidal gold probes is dependent upon the size of the gold particle, the reduction method used, the primary ligand, and the pH at which this is adsorbed, as well as upon the secondary and tertiary stabilizers used. It is proposed that such differences in surface charge may underlie the different results which may sometimes be observed in colloidal gold labeling, especially when novel ligands are used.  相似文献   

8.
We evaluated three antisera and four enzyme conjugates for the detection of Bradyrhizobium japonicum by an indirect enzyme-linked immunosorbent assay in microtiter plates. Nitrocellulose membrane sheets were then evaluated as an alternative support medium by using some combinations. Partially purified immunoglobulin G (IgG) or unpurified antisera to strain USDA 110 raised in rabbits, goats, or sheep was reacted in microtiter plates with alkaline phosphatase conjugated to protein A, goat anti-rabbit (GAR), sheep anti-rabbit (SAR), or rabbit anti-goat (RAG) IgG. Cultures or nodules containing homologous rhizobia were detected with equal sensitivity when protein A, GAR, or SAR was reacted with 5 μg of protein IgG per ml or a 1:800 titer of antisera from rabbits, but not goats or sheep. RAG reacted with IgG or antisera from goats or sheep. The detection limit was 2 × 105 rhizobia per well. Rhizobia were spotted on nitrocellulose sheets as an alternative support medium, followed by soaking in 5 μg of protein per ml as IgG and 1:4,000 dilutions of protein A or GAR conjugate. Rhizobia in serogroup 110 were detected with the dye combination Nitro Blue Tetrazolium-5-bromo-4-chloro-3-indolyl phosphate (NBT-BCIP), and rhizobia in serogroup 122 were detected with fast red-naphthol phosphate (FR-NP). At the conclusion of the 5-h assay, purple (NBT-BCIP) or red (FR-NP) spots were visible in positive reactions. The sensitivity of detection was about 1,000 rhizobial cells or 3 μg of nodules tissue.  相似文献   

9.
The goal of this study was to develop an alternative to silver intensification for visualizing small colloidal gold particles by light and electron microscopy. The isolated goldfish retina was labeled with rabbit antiserum to tyrosine hydroxylase and 1-nm colloidal gold-conjugated goat anti-rabbit IgG. The gold particles were enlarged by toning with gold chloride, followed by reduction in oxalic acid. Dopaminergic interplexiform cells were clearly visible by light microscopy and, in lightly-fixed material treated with detergent, they were labeled in their entirety. Labeling was qualitatively similar, although less extensive, in material fixed and processed for electron microscopy. The labeled processes were apparent in ultra-thin sections viewed at low magnification, but the gold-toned particles were not so large that they obscured subcellular structures. The procedure apparently had no deleterious effects on the tissue, since the ultrastructural preservation was comparable to that seen with other pre-embedding immunolabeling methods. The technique was simple, reliable and, since the gold solutions were so dilute, relatively inexpensive.  相似文献   

10.
The potential of ultrasmall gold particles for the light microscopical detection of leukocyte cell surface differentiation antigens was investigated. Suspensions and cytocentrifuge preparations of peripheral blood leukocytes were first incubated with monoclonal antibodies and then with goat antimouse antibodies coupled to colloidal gold particles of 1-nanometer diameter. Cytocentrifuge preparations were made from the cell suspensions. Silver enhancement was performed on all preparations. Then they were counterstained with May-Grünwald Giemsa and examined in light microscopy. The immunostaining appeared as fine dark granules on the surface membrane of the cells. Labeling conditions were determined which gave a dense specific immunostaining and a low background. High dilutions of the ultrasmall gold probe could be used to detect all antigen expressing cells in the samples. The labeling efficiency of the IGSS method with the 1 nanometer probe was comparable to that described earlier for 5 nanometer gold particles. Lymphocyte subsets enumerated with this method in normal peripheral blood were similar to those found with immunofluorescence microscopy. We concluded that one nanometer probes do not offer a major advantage in comparison with 5 nanometer probes for the study of cell surface antigens.  相似文献   

11.
Protein G, a cell wall protein isolated from human group G streptococci strain G148, binds in a similar manner as protein A from Staphylococcus aureus to the Fc portion of IgG molecules. Indeed, protein G has been proposed as a superior Fc binding protein due to its broader species reactivity. Thus, we have prepared a complex of protein G with particles of colloidal gold and determined its applicability for spot-blot analysis and postembedding immunolabeling by comparing it with protein A-gold complex. By spot-blot analysis no difference in binding of protein G-gold or protein A-gold to IgG molecules from a whole spectrum of animal species was observed. Moreover, using rabbit, sheep, or goat anti-rat albumin antibodies to detect nitrocellulose-immobilized rat albumin or antigenic sites in paraffin and Lowicryl K4M thin sections from rat liver, no difference was found with protein G-gold or protein A-gold. Similarly, no difference in binding to protein G-gold or protein A-gold was observed with a battery of monoclonal antibodies. However, in contrast to expectations, protein A-gold reacted well with both sheep and goat IgG molecules; indeed, for the light and electron microscopic localization of albumin with sheep or goat antibodies it was as efficient as protein G-gold. These results demonstrate, therefore, that both protein G-gold and protein A-gold are useful second step reagents for immunolabeling and that protein G-gold was not a superior probe in the systems tested.  相似文献   

12.
Summary The potential of ultrasmall gold particles for the light microscopical detection of leukocyte cell surface differentiation antigens was investigated. Suspensions and cytocentrifuge preparations of peripheral blood leukocytes were first incubated with monoclonal antibodies and then with goat antimouse antibodies coupled to colloidal gold particles of 1-nanometer diameter. Cytocentrifuge preparations were made from the cell suspensions. Silver enhancement was performed on all preparations. Then they were counterstained with May-Grünwald Giemsa and examined in light microscopy. The immunostaining appeared as fine dark granules on the surface membrane of the cells. Labeling conditions were determined which gave a dense specific immunostaining and a low background. High dilutions of the ultrasmall gold probe could be used to detect all antigen expressing cells in the samples. The labeling efficiency of the IGSS method with the 1 nanometer probe was comparable to that described earlier for 5 nanometer gold particles. Lymphocyte subsets enumerated with this method in normal peripheral blood were similar to those found with immunofluorescence microscopy. We concluded that one nanometer probes do not offer a major advantage in comparison with 5 nanometer probes for the study of cell surface antigens.  相似文献   

13.
Localization of globoside and Forssman glycolipids on erythrocyte membranes   总被引:5,自引:0,他引:5  
Using the freeze-etch technique, the membrane localization of globoside, a principal glycolipid in human erythrocytes, and Forssman antigen, the chief glycolipid in sheep erythrocytes was evaluated using ferritin and colloidal gold as morphological markers for rabbit antibodies prepared against these glycolipids. Brief trypsinization of human red cell ghosts markedly aggregated intramembranous particles and permitted labeling of globoside, which appeared in a clustered arrangement. The aggregates of ferritin-anti-globoside differed from those of ferritin-wheat germ agglutinin, a label for glycophorin, which corresponded with the aggregates of intramembranous particles. Double-labeling of human trypsinized ghosts with anti-globoside/ Staphylococcal protein A-colloidal gold and ferritin-wheat germ agglutinin indicated that the patterns of labeling were different and that the aggregates of globoside did not bear a direct relationship to the intramembranous particles, which represent transmembrane proteins. Resealed sheep erythrocyte ghosts labeled with ferritin-conjugated rabbit anti-Forssman showed small clusters of Forssman glycolipid on the erythrocyte surface, which could be markedly aggregated with a second goat anti-rabbit antibody, indicating relative mobility of the small glycolipid domains. The distribution of ferritin-anti-Forssman label in sheep ghosts treated at pH 5.5 to aggregate intramembranous particles also did not show definite correspondence between intramembranous particles and the clusters of ferritin-anti-Forssman.  相似文献   

14.
The subcellular distribution of enzymes related to carbohydrate metabolism was determined in sections of paraformaldehyde fixed and polyethylene glycol-1540-embedded rat liver and in cryostat sections. For this purpose, goat anti-rat phosphoenolpyruvate carboxykinase (PEPCK) serum and rabbit anti-rat glycogen phosphorylase (GP) serum were used as primary antibodies to localize the corresponding antigens. The primary antibodies were localized by 5 nm colloidal gold labeled secondary antibodies (either rabbit anti-goat IgG for PEPCK or goat anti-rabbit IgG for GP), and the gold particles were enhanced by silver staining using appropriate development reagents. The silver enhanced gold particles were detected by epipolarized light microscopy. PEPCK and GP immunoreactive molecules were found only in glycogen-containing areas of the cytosome of hepatocytes, and not in other cells. No immunocytochemical staining of hepatocytes was found when normal serum replaced the primary antibody in the procedures. Visio-Bond semithin (0.35–1.0 m) sections provided higher resolution for subcellular immunostaining of PEPCK and GP than cryosections of 10 m. Epipolarized light microscopy provided detection at high sensitivity of the gold-labeled antibody, and combined with transmitted light, allowed simultaneous visualization of the tissue morphology.  相似文献   

15.

Background

All progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip. The reference population consisted of 677 bucks and 148 selection candidates. With the two-step approach based on genomic best linear unbiased prediction (GBLUP), prediction accuracy of candidates did not outperform that of the parental average. We investigated a GBLUP method based on a single-step approach, with or without blending of the two breeds in the reference population.

Methods

Three models were used: (1) a multi-breed model, in which Alpine and Saanen breeds were considered as a single breed; (2) a within-breed model, with separate genomic evaluation per breed; and (3) a multiple-trait model, in which a trait in the Alpine was assumed to be correlated to the same trait in the Saanen breed, using three levels of between-breed genetic correlations (ρ): ρ = 0, ρ = 0.99, or estimated ρ. Quality of genomic predictions was assessed on progeny-tested bucks, by cross-validation of the Pearson correlation coefficients for validation accuracy and the regression coefficients of daughter yield deviations (DYD) on genomic breeding values (GEBV). Model-based estimates of average accuracy were calculated on the 148 candidates.

Results

The genetic correlations between Alpine and Saanen breeds were highest for udder type traits, ranging from 0.45 to 0.76. Pearson correlations with the single-step approach were higher than previously reported with a two-step approach. Correlations between GEBV and DYD were similar for the three models (within-breed, multi-breed and multiple traits). Regression coefficients of DYD on GEBV were greater with the within-breed model and multiple-trait model with ρ = 0.99 than with the other models. The single-step approach improved prediction accuracy of candidates from 22 to 37% for both breeds compared to the two-step method.

Conclusions

Using a single-step approach with GBLUP, prediction accuracy of candidates was greater than that based on parent average of official evaluations and accuracies obtained with a two-step approach. Except for regression coefficients of DYD on GEBV, there were no significant differences between the three models.  相似文献   

16.
Earlier studies have shown that immunoglobulin G (IgG)-coated colloidal gold particles bind to specific receptors on the macrophage surface and accumulate in coated pits. They are then internalized via endocytic vesicles and transferred to lysosomes. During this process the plasma membrane is depleted of binding sites for IgG, suggesting that both the receptor and the ligand end up in lysosomes. Here, we have examined the effects of the weak base chloroquine and the Na+-H+ ionophore monensin on endocytosis and intracellular transport of IgG-coated colloidal gold particles in cultured macrophages. The results indicate that chloroquine and monensin do not arrest uptake of IgG-coated particles bound to the cell surface. On the other hand, the drugs strongly inhibit transfer of the particles from endocytic vesicles to lysosomes, the latter marked by prior pulse-chase labeling of the cells with horseradish peroxidase. Since the main effect shared by chloroquine and monensin is to raise pH in acid compartments such as endocytic vesicles and lysosomes, the findings suggest that the transfer of IgG-coated particles into the lysosomes is a pH-dependent process. It remains to be shown whether it is the membrane fusion as such that is controlled by pH or, more specifically, the transfer of receptor-bound ligands into the lysosomes.  相似文献   

17.
Purified rabbit antiserum to a tartrate-resistant and vanadate-sensitive acid phosphatase (nucleotide tri- and diphosphatase) prepared from rat bone was used in immunocytochemical studies. The antigen was localized in sections of fixed, decalcified tissue (head from rat) using the peroxidase-antiperoxidase bridge (PAP) or the avidin-biotin-peroxidase complex (ABC) technique. Both techniques resulted in similar and specific immunostaining in the following cells and tissues: osteoclasts situated in resorption lacunae, epithelium overlying enamel-free areas of tips of cusps of unerupted molars, cilia of respiratory epithelium, and tissue macrophages. This distribution corresponds to the cellular sites of tartrate-resistant acid phosphatase activity, as revealed by enzyme histochemistry. With the ABC method, staining in osteoclasts was obtained with antiserum dilutions of up to 1:10,000. Biochemical studies revealed that vanadate-sensitive acid ATPase activity in liver subcellular fractions was almost exclusively confined to lysosomes. Thus, the immunostaining has revealed the presence of the tartrate-resistant and vanadate-sensitive nucleotide phosphatase in many cells associated with tissue resorption and phagocytosis.  相似文献   

18.
《Biosensors》1987,3(4):211-225
The sensitivity of surface plasmon resonance techniques to changes in local interfacial refractive index has been exploited to detect immuno-complex formation in two model biochemical systems. A gold-coated diffraction grating has been used to excite surface plasmons at the gold/solution interface to which either human immunoglobulin G or the immunoglobulin fraction of sheep antiserum to human serum albumin was physically adsorbed. The complementary proteins, either affinity purified goat antihuman-IgG IgG or human serum albumin was subsequently specifically bound by immuno-complex formation. The binding reactions could be followed with respect to time.  相似文献   

19.
Optimally fixed paraffin enbedded tissue sections and cytocentrifuged cell smears were used to test the sensitivity and nonspecific staining with the enzyme-bridge, PAP, indirect and direct immunoperoxidase methods using human immunoglobulins and lysozyme as antigens. With the enzyme-bridge method positive staining was seen with primary antiserum dilutions up to 1:20,000. The least background staining was observed with this method. The PAP method was equally sensitive, although false-negative results with low primary antiserum dilutions were seen. Some nonspecific background staining always persisted using the PAP method even with high primary antiserum dilutions. The indirect method was not as sensitive as the enzyme-bridge method and some nonspecific staining always persisted. The direct method was too insensitive with paraffin embedded tissue sections.  相似文献   

20.
Polyethylene glycol (PEG) is an excellent embedding medium for immunohistochemical studies. It provides structural preservation superior to frozen sections and increased sensitivity of antigen detection compared with paraffin sections. One limitation of PEG embedment is that PEG sections are difficult to handle and adhere poorly to glass slides. Here we present a simple and effective method for embedding tissues in PEG and transferring the resultant sections onto silanated glass slides. In addition, a method for silver enhanced colloidal gold immunostaining was combined with common dye staining to demonstrate the excellent structure preservation and sensitive antigen detection. Bovine chorionic membrane was fixed with Bouin's fixative, embedded in polyethylene glycol (PEG) 1500, cut into 5-microns sections, flattened over agarose blocks (10 x 10 x 2 mm3), and blotted onto Digene silanated slides. Slides were then washed in PBS, which removed the PEG and agarose blocks. Tissue sections were immunocytochemically stained with dilute antiserum raised in a rabbit against purified bovine placental retinol binding protein (bpRBP). Sections were washed and incubated with 1-nm colloidal gold-labeled goat anti-rabbit IgG. The immunogold particles were enhanced by silver staining (IGSS). Specimens were observed and photographed with an Olympus epipolarization microscope. The new method offered excellent morphological preservation of cell structure and the epipolarization microscopy provided high sensitivity for detection of specific immunogold-silver particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号