首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertional mutagenesis of Magnaporthe oryzae led to the identification of MCK1, a pathogenicity gene predicted to encode mitogen-activated protein kinase kinase kinase (MAPKKK) homologous to BCK1 in Saccharomyces cerevisiae. Targeted disruption of MCK1 resulted in the fungus undergoing autolysis and showing hypersensitivity to cell-wall-degrading enzyme. The mck1 produced significantly reduced numbers of conidia and developed appressoria in a slightly retarded manner compared with the wild type. Appressorium of the mck1 mutant was unable to penetrate into plant tissues, thereby rendering the mutant nonpathogenic. Cytorrhysis assay and monitoring of lipid mobilization suggested that the appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, the mck1 mutant failed to grow inside plant tissue. Complementation of the mutated gene restored its ability to cause disease symptoms, demonstrating that MCK1 is required for fungal pathogenicity. Taken together, our results suggest that MCK1 is an MAPKKK involved in maintaining cell wall integrity of M. oryzae, and that remodeling of the cell wall in response to host environments is essential for fungal pathogenesis.  相似文献   

2.
3.
Myogenesis is accompanied by the withdrawal of proliferating myoblasts from the cell cycle, their fusion to form myotubes, and the coordinate expression of a variety of muscle-specific gene products, such as the muscle isoenzyme of creatine kinase (MCK). In the present study we used the nonfusing muscle cell line, BC3H1, to examine the mechanisms involved in regulation of MCK mRNA expression. Proliferating BC3H1 cells, in media with 20% fetal calf serum, had undetectable levels of MCK mRNA. Exposure of undifferentiated cells to media containing 0.5% serum resulted in withdrawal of cells from the cell cycle and in a several hundred-fold increase in the steady state level of MCK mRNA. Induction of this muscle-specific mRNA could be rapidly reversed by exposure of quiescent differentiated cells to media containing either 20% serum or pituitary fibroblast growth factor. The decline in the steady state level of MCK mRNA following mitogenic stimulation was not dependent upon reentry of cells into the cell cycle, but it did require protein synthesis. Together, these data indicate that fibroblast growth factor can specifically inhibit muscle-specific gene expression through a mechanism independent of cell proliferation. The finding that MCK mRNA was down-regulated by a mechanism that required protein synthesis suggests that mitogen-inducible early gene products may be involved in regulation of muscle gene expression.  相似文献   

4.
Wang L  Liang S  Lu YT 《Planta》2001,213(4):556-564
The maize genomic sequence and cDNA encoding a calcium/calmodulin-dependent protein kinase homolog were isolated and identified. The deduced peptide (MCK2) from this cDNA shared high amino acid identity (91.2%) with maize MCK1. These two genes were physically mapped onto chromosomes by fluorescence in situ hybridization using the first introns of the genes as gene-specific probes. While the MCK1 gene was assigned to a locus on the long arm of chromosome 9, the MCK2 gene was localized to a locus on the long arm of chromosome 1. Both of these genes were expressed in roots, leaves, stems and flowers, and the expression patterns of MCK were verified by RNA in situ hybridization. These results indicated that MCK expression is temporally and spatially regulated during maize growth and development.  相似文献   

5.
The yeast gene MCK1 encodes a serine/threonine protein kinase that is thought to function in regulating kinetochore activity and entry into meiosis. Disruption of MCK1 confers a cold-sensitive phenotype, a temperature-sensitive phenotype, and sensitivity to the microtubule-destabilizing drug benomyl and leads to loss of chromosomes during growth on benomyl. A dosage suppression selection was used to identify genes that, when present at high copy number, could suppress the cold-sensitive phenotype of mck1::HIS3 mutant cells. Several unique classes of clones were identified, and one of these, designated MDS1, has been characterized in some detail. Nucleotide sequence data reveal that MDS1 encodes a serine/threonine protein kinase that is highly homologous to the shaggy/zw3 kinase in Drosophila melanogaster and its functional homolog, glycogen synthase kinase 3, in rats. The presence of MDS1 in high copy number rescues both the cold-sensitive and the temperature-sensitive phenotypes, but not the benomyl-sensitive phenotype, associated with the disruption of MCK1. Analysis of strains harboring an mds1 null mutation demonstrates that MDS1 is not essential during normal vegetative growth but appears to be required for meiosis. Finally, in vitro experiments indicate that the proteins encoded by both MCK1 and MDS1 possess protein kinase activity with substrate specificity similar to that of mammalian glycogen synthase kinase 3.  相似文献   

6.
7.
BACKGROUND: High transgene expression is generally expected after gene transfer. However, different level, kinetics and localization of expression might be needed for relevant therapeutic applications. Former studies have compared various promoter regions driving gene expression leading to conflicting results. In the present work, two promoter families have been compared using the efficient in vivo intramuscular electrotransfer technique. METHODS: Three promoter regions were constructed by associating the strong ubiquitous cytomegalovirus (CMV) enhancer-promoter to its homologous intron A or to a heterologous intron, or to a hybrid intron. Promoter regions derived from the muscle creatine kinase (MCK) promoter were also studied. The expression of the same transgene (SeAP or neurotrophin-3) under control of these different promoters was compared after plasmid electrotransfer in mouse tibialis-cranialis skeletal muscle. RESULTS: Heterologous intron association to the CMV promoter did not modify gene expression kinetics nor increase gene expression level. Usefulness of intron A or hybrid intron association to the CMV promoter depended on the gene. The various MCK promoters drove efficient gene expression but lower than that obtained with the CMV promoter. Furthermore, peak value was reached earlier with MCK promoter regions (14 days). CONCLUSION: For applications of gene transfer restricted to skeletal muscle, the MCK promoter or a MCK promoter variant would be a promising alternative to the CMV promoter. Indeed, it has been demonstrated that the use of MCK promoter limits humoral and cell-mediated immune responses. Furthermore, the MCK promoter decreases the initial expression peak that may be detrimental, drives a sustained gene expression, and improves gene transfer safety.  相似文献   

8.
9.
10.
BMP2 is a growth factor that regulates the cell fate of mesenchymal stem cells into osteoblast and adipocytes. However, the detailed signaling pathways and mechanism are unknown. We previously reported a new interaction of Casein kinase II (CK2) with the BMP receptor type-Ia (BMPRIa) and demonstrated using mimetic peptides CK2.1, CK2.2 and CK2.3 that the release of CK2 from BMPRIa activates Smad signaling and osteogenesis. Previously, we showed that mutation of these CK2 sites on BMPRIa (MCK2.1 (476S-A), MCK2.2 (324S-A) and MCK2.3 (214S-A)) induced osteogenesis. However, one mutant MCK2.1 induced osteogenesis similar to overexpression of wild type BMPRIa, suggesting that the effect of this mutant on mineralization was due to overexpression. In this paper we investigated the signaling pathways involved in the CK2-BMPRIa mediated osteogenesis and identified a new signaling pathway activating adipogenesis dependent on the BMPRIa and CK2 association. Further the mechanism for adipogenesis and osteogenesis is specific to the CK2 interaction site on BMPRIa. In detail our data show that overexpression of MCK2.2 induced osteogenesis was dependent on Caveolin-1 (Cav1) and the activation of the Smad and mTor pathways, while overexpression of MCK2.3 induced osteogenesis was independent of Caveolin-1 without activation of Smad pathway. However, MCK2.3 induced osteogenesis via the MEK pathway. The adipogenesis induced by the overexpression of MCK2.2 in C2C12 cells was dependent on the p38 and ERK pathways as well as Caveolin-1. These data suggest that signaling through BMPRIa used two different signaling pathways to induce osteogenesis dependent on CK2. Additionally the data supports a signaling pathway initiated in caveolae and one outside of caveolae to induce mineralization. Moreover, they reveal the signaling pathway of BMPRIa mediated adipogenesis.  相似文献   

11.
To determine whether mitogen-regulated expression of skeletal muscle genes is independent of cell type, muscle and nonmuscle cells were transfected with cloned 5'-flanking sequences of muscle creatine kinase (MCK) fused to a heterologous reporter gene and tested for expression in high and low mitogen culture conditions. Consistent with the behavior of endogenous MCK, a -3300MCK-CAT gene is expressed at high levels in differentiated muscle cells but at low to undetectable levels in proliferating myoblasts and in either mitogen-deprived or stimulated nonmuscle cells of mesodermal, ectodermal, or endodermal origin. A -776MCK-CAT gene behaves similarly with respect to its cell type specificity but it supports only an intermediate expression level in response to mitogen deprivation in skeletal muscle cells. These data suggest that the -3300 to +7 nucleotide region of mouse MCK contains one or more elements which are activable by mitogen deprivation only in myogenic cells.  相似文献   

12.
Trehalose is a major storage carbohydrate in budding yeast, Saccharomyces cerevisiae. Alterations in trehalose synthesis affect carbon source-dependent growth, accumulation of glycogen and sporulation. Trehalose is synthesized by trehalose phosphate synthase (TPS), which is a complex of at least four proteins. In this work, we show that the Tps1p subunit protein catalyses trehalose phosphate synthesis in the absence of other TPS components. The tps1-H223Y allele (glc6-1) that causes a semidominant decrease in glycogen accumulation exhibits greater enzyme activity than wild-type TPS1 because, unlike the wild-type enzyme, TPS activity in tps1-H223Y cells is not inhibited by phosphate. Poor sporulation in tps1 null diploids is caused by reduced expression of meiotic inducers encoded by IME1, IME2 and MCK1. Furthermore, high-copy MCK1 or heterozygous hxk2 mutations can suppress the tps1 sporulation trait. These results suggest that the trehalose-6-phosphate inhibition of hexokinase activity is required for full induction of MCK1 in sporulating yeast cells.  相似文献   

13.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.  相似文献   

14.
Skeletal muscle differentiation is accompanied by accumulation of the mRNA encoding the muscle isoenzyme of creatine kinase (MCK) and can be suppressed by serum components, fibroblast growth factor (FGF), or type beta transforming growth factor (TGF beta). Using the nonfusing myogenic cell line, BC3H1, the potential involvement of c-myc in growth factor-dependent inhibition of myogenesis was examined. Withdrawal of undifferentiated myoblasts from the cell cycle in medium with 0.5% serum was associated with a precipitous decline in expression of c-myc mRNA followed by induction of MCK mRNA. In 0.5% serum containing TGF beta, c-myc mRNA declined to a level identical to that in differentiated cells; however, MCK mRNA was not expressed. Exposure of quiescent differentiated cells to FGF or TGF beta caused disappearance of muscle-specific gene products and was accompanied by only transient low level induction of c-myc mRNA. These data indicate that persistent c-myc expression is not required for growth factor-mediated inhibition of myogenic differentiation.  相似文献   

15.
16.
Muscle creatine kinase (MCK) is expressed at high levels only in skeletal and cardiac muscle tissues. Previous in vitro transfection studies of skeletal muscle myoblasts and fibroblasts had identified two MCK enhancer elements and one proximal promoter element, each of which exhibited expression only in differentiated skeletal muscle. In this study, we have identified several regions of the mouse MCK gene that are responsible for tissue-specific expression in transgenic mice. A fusion gene containing 3,300 nucleotides of MCK 5' sequence exhibited chloramphenicol acetyltransferase activity levels that were more than 10(4)-fold higher in skeletal muscle than in other, nonmuscle tissues such as kidney, liver, and spleen. Expression in cardiac muscle was also greater than in these nonmuscle tissues by 2 to 3 orders of magnitude. Progressive 5' deletions from nucleotide -3300 resulted in reduced expression of the transgene, and one of these resulted in a preferential decrease in expression in cardiac tissue relative to that in skeletal muscle. Of the two enhancer sequences analyzed, only one directed high-level expression in both skeletal and cardiac muscle. The other enhancer activated expression only in skeletal muscle. These data reveal a complex set of cis-acting sequences that have differential effects on MCK expression in skeletal and cardiac muscle.  相似文献   

17.
18.
We have used transient transfections in MM14 skeletal muscle cells, newborn rat primary ventricular myocardiocytes, and nonmuscle cells to characterize regulatory elements of the mouse muscle creatine kinase (MCK) gene. Deletion analysis of MCK 5'-flanking sequence reveals a striated muscle-specific, positive regulatory region between -1256 and -1020. A 206-bp fragment from this region acts as a skeletal muscle enhancer and confers orientation-dependent activity in myocardiocytes. A 110-bp enhancer subfragment confers high-level expression in skeletal myocytes but is inactive in myocardiocytes, indicating that skeletal and cardiac muscle MCK regulatory sites are distinguishable. To further delineate muscle regulatory sequences, we tested six sites within the MCK enhancer for their functional importance. Mutations at five sites decrease expression in skeletal muscle, cardiac muscle, and nonmuscle cells. Mutations at two of these sites, Left E box and MEF2, cause similar decreases in all three cell types. Mutations at three sites have larger effects in muscle than nonmuscle cells; an A/T-rich site mutation has a pronounced effect in both striated muscle types, mutations at the MEF1 (Right E-box) site are relatively specific to expression in skeletal muscle, and mutations at the CArG site are relatively specific to expression in cardiac muscle. Changes at the AP2 site tend to increase expression in muscle cells but decrease it in nonmuscle cells. In contrast to reports involving cotransfection of 10T1/2 cells with plasmids expressing the myogenic determination factor MyoD, we show that the skeletal myocyte activity of multimerized MEF1 sites is 30-fold lower than that of the 206-bp enhancer. Thus, MyoD binding sites alone are not sufficient for high-level expression in skeletal myocytes containing endogenous levels of MyoD and other myogenic determination factors.  相似文献   

19.
Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 M KN-93, but binding is not affected by 5 M KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 M KN-93, but not by 5 M KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.Abbreviations CaM calmodulin - CaMK (II) Ca2+/calmodulin-dependent protein kinase (II) - CBP CaM-binding protein - CDPK Ca2+-dependent protein kinase - MCK1 maize homolog of mamalian CaMK This work is supported by the National Aeronautics and Space Administration grant No: NAGW 238.  相似文献   

20.
Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly reduced activity in cultured skeletal myocytes. However, the enhancer AT-rich element at nt - 1195 was critical for expression in transgenic skeletal muscle. Mutation of this site reduced skeletal muscle expression to the same level as transgenes lacking the 206-bp enhancer, although mutation of the AT-rich site did not affect cardiac muscle expression. These results demonstrate clear differences between the activity of MCK regulatory regions in cultured muscles cells and in whole adult transgenic muscle. This suggests that there are alternative mechanism of regulating the MCK gene in skeletal and cardiac muscle under different physiological states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号