首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences among flagellated and nonflagellated sperm in land plants are striking, but close examination reveals similarities in pattern of cytoskeleton and in nuclear structure. The microtubular cytoskeleton of flowering plant sperm consists of microtubule bundles arranged obliquely around the nucleus, terminating in cellular extensions. Microtubules are linked into bundles that branch and rejoin along the axis of the sperm cell, forming a cytoskeleton that determines cell shape but does not actively participate in cell movement. Generative cells and sperm share a pattern of microtubules not found in somatic cells. This pattern is initiated in the generative cell, one division before sperm formation, a situation parallel to spermatogenous cell development in vascular plants with flagellated sperm. Chromatin in flagellated and nonflagellated sperm is condensed by specialized histones.  相似文献   

2.
Successful fertilization in animals depends on competition among millions of sperm cells, whereas double fertilization in flowering plants usually involves just one pollen tube releasing two immobile sperm cells. It is largely a mystery how the plant sperm cells fuse efficiently with their female targets within an embryo sac. We show that the initial positioning of sperm cells upon discharge from the pollen tube is usually inopportune for gamete fusions and that adjustment of sperm cell targeting occurs through release and re-adhesion of one sperm cell, while the other connected sperm cell remains in stagnation.This enables proper adhesion of each sperm cell to a female gamete and coordinates the gamete fusions. Our findings reveal inner embryo sac dynamics that ensure the reproductive success of flowering plants and suggest a requirement for sperm cell differentiation as the basis of double fertilization.  相似文献   

3.
Two sperm cells are required to achieve double fertilization in flowering plants (angiosperms). In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and are transported to the female gametes (egg and central cell) via the pollen tube. The two sperm cells arise from the generative pollen cell either within the pollen grain or after germination inside the pollen tube. While pollen tube growth and sperm behavior has been intensively investigated in model plant species such as tobacco and lily, little is know about sperm dynamics and behavior during pollen germination, tube growth and sperm release in grasses. In the March issue of Journal of Experimental Botany, we have reported about the sporophytic and gametophytic control of pollen tube germination, growth and guidance in maize.1 Five progamic phases were distinguished involving various prezygotic crossing barriers before sperm cell delivery inside the female gametophyte takes place. Using live cell imaging and a generative cell-specific promoter driving α-tubulin-YFP expression in the male germline, we report here the formation of the male germline inside the pollen grain and the sperm behaviour during pollen germination and their movement dynamics during tube growth in maize.Key words: male gametophyte, generative cell, sperm, pollen tube, tubulin, fertilization, maize  相似文献   

4.
Z. Zhang  H. Q. Tian  S. D. Russell 《Protoplasma》1999,208(1-4):123-128
Summary Actomyosin interactions are reportedly the principal mechanism for the transport of nonmotile sperm cells of flowering plants inside the pollen tube and inside the embryo sac. Myosin has been demonstrated on the generative cell (the predecessor of sperm cells), although it is unclear from previous studies whether myosin is located directly on the plasma membrane of the male germ cells or on the external plasma membrane of the pollen cell that surrounds them. Immunogold scanning electron microscopy was used to localize myosin on isolated tobacco sperm cells, with and without associated membranes. When present, the pollen tube plasma membrane surrounding the sperm cells was labeled by an antimyosin antibody, as were pollen tube cytoplasmic organelles. Negligible labeling was observed directly on the plasma membrane of the sperm cells.  相似文献   

5.
Flowering plants have evolved a unique reproductive process called double fertilization, whereby two dimorphic female gametes are fertilized by two immotile sperm cells conveyed by the pollen tube. The two sperm cells are arranged in tandem with a leading pollen tube nucleus to form the male germ unit and are placed under the same genetic controls. Genes controlling double fertilization have been identified, but whether each sperm cell is able to fertilize either female gamete is still unclear. The dynamics of individual sperm cells after their release in the female tissue remain largely unknown. In this study, we photolabeled individual isomorphic sperm cells before their release and analyzed their fate during double fertilization in Arabidopsis thaliana. We found that sperm delivery was composed of three steps. Sperm cells were projected together to the boundary between the two female gametes. After a long period of immobility, each sperm cell fused with either female gamete in no particular order, and no preference was observed for either female gamete. Our results suggest that the two sperm cells at the front and back of the male germ unit are functionally equivalent and suggest unexpected cell-cell communications required for sperm cells to coordinate double fertilization of the two female gametes.  相似文献   

6.
开花植物精细胞的发育经历一个独特的后减数分裂过程,在此过程中每个花粉母细胞减数分裂的产物——小孢子经不对称有丝分裂产生1个大的营养细胞和1个小的生殖细胞,随后生殖细胞经过正常的有丝分裂产生2个精细胞。近几年,随着高通量组学技术的不断完善,利用组学技术比较分析生殖细胞和精细胞的分子特征、揭示决定精细胞命运与功能以及受精识别的重要分子已成为植物生殖生物学备受关注的课题。开展此项研究的关键是建立能获得大量高纯度的生殖细胞与精细胞分离纯化技术。该文综述了被子植物生殖细胞和精细胞分离方法的主要研究进展,分析了关键方法的特点和要点以及不同方法之间的差异和共性,以期为相关领域的研究人员提供借鉴。  相似文献   

7.
Studies using classic genetics as well as restriction fragment length polymorphism analysis have demonstrated that rye, unlike most flowering plants, has biparental inheritance of both plastids and mitochondria. Yet, a previous in-depth ultrastructural study found no plastids in rye sperm cells, and DNA-specific staining revealed no cytoplasmic DNA in the male gametes of this plant. In the present study, we examined serial ultrathin sections of eight rye sperm cells (four pairs) and found unambiguous examples of plastids in all cases. The number of plastids per sperm cell varies from two to 12. The sperm of a pair may vary with regard to plastid number; however, these differences are not consistent among the sperm pairs examined.  相似文献   

8.
We used fluorescence in situ hybridization to identify and map the position of B chromosomes (supernumerary chromosomes) within maize sperm cells. Observations on over 1,000 sperm cells from several genotypes show that, on average, the B chromosomes are positioned in the tip one-fourth of the sperm nucleus two-thirds of the time. In contrast, the centromeres and knobs of the A chromosomes (the normal set) are not restricted to the tip portion of the nucleus. To our knowledge, this is the first example of specific chromosome positioning within a plant gamete. Studies on nuclear architecture of somatic cells in both plants and animals suggest that chromosome behavior and gene expression may correlate with chromosome position within the nucleus. The functional significance of nonrandom positioning of the B chromosomes within maize sperm is as yet unclear. Received: 10 May 2000 / Revision accepted: 6 September 2000  相似文献   

9.
Sex-possessing organisms perform sexual reproduction, in which gametes from different sexes fuse to produce offspring. In most eukaryotes, one or both sex gametes are motile, and gametes actively approach each other to fuse. However, in flowering plants, the gametes of both sexes lack motility. Two sperm cells (male gametes) that are contained in a pollen grain are recessively delivered via pollen tube elongation. After the pollen tube bursts, sperm cells are released toward the egg and central cells (female gametes) within an ovule (Fig. 1). The precise mechanism of sperm cell movement after the pollen tube bursts remains unknown. Ultimately, one sperm cell fuses with the egg cell and the other one fuses with the central cell, producing an embryo and an endosperm, respectively. Fertilization in which 2 sets of gamete fusion events occur, called double fertilization, has been known for over 100 y. The fact that each morphologically identical sperm cell precisely recognizes its fusion partner strongly suggests that an accurate gamete interaction system(s) exists in flowering plants.Open in a separate windowFigure 1.Illustration of the fertilization process in flowering plants. First, each pollen tube accesses an ovule containing egg and central cells. Next, the 2 sperm cells face the female gametes in the ovule after the pollen tube bursts. Finally, each sperm cell simultaneously fuses with either egg or central cell.  相似文献   

10.
In angiosperms, two sperms have been recognized as cells linked together by themselves and closely associated with the vegetative nucleus in pollen grain or in pollen tube ;o form so called the “male germ unit (MGU)”In addition to MGU, recent studies have shown the existence in several plants that the two sperm cells in pair may be very different in size, shape, organelle content, and sperm heteromorphism. The concept of the MGU and sperm heteromorphism has appeared in more than 40 reports and has triggered new research concerning the angiosperm fertilization process, In this review, a survey and analysis of the MGU and sperm heteromorphism in literature of last decade are presented and the new experimental approaches are suggested.  相似文献   

11.
12.
Motile sperm cells of land plants are released directly into the environment and encounter numerous constraints on their way to the egg. Sperm cell organization, shape, size, and plasticity are crucial to the processes associated with fertilization. We conducted an ultrastructural investigation to detail insemination (sperm release, swimming and movement within the archegonium) and fertilization in the model fern Ceratopteris richardii. Gametophytes were grown from spores using sterile culture techniques and flooded in water when sexually mature. Materials were examined at different stages post-flooding. During insemination in C. richardii, the sperm cytoskeleton and flagella rearrange, and the coils of the cell extend while entering the neck canal. In this nearly linear configuration, the dense ridge, a densely compacted band of filaments presumed to be actin, expands to surround the leading edge of the sperm cell. This ridge fuses with the receptive site on the female gamete and is the sperm component that initiates contact with the egg nuclear envelope. All cellular components, except plastids, enter the egg cytoplasm. Sperm mitochondria are distinguishable from those of the egg because they are encased by two or three additional membranes and are sequestered from the zygote cytoplasm. During karyogamy, the sperm components, including the microtubule cytoskeleton (spline) and flagella, maintain their spatial integrity. Microtubules play key roles not only in sperm cell structure but also in facilitating karyogamy in this fern. After karyogamy is completed, microtubule arrays of the sperm cell and the components of the locomotory apparatus are disassembled. We provide the first demonstration of the likely involvement of sperm actin in egg penetration in land plants and new insights into the fate of paternal organelles. This study points to the roles sperm cell structure and dynamics play in the intricate processes of insemination and fertilization in land plants.  相似文献   

13.
14.
15.
精细胞的分离是植物生殖工程的一个重要组成部分,是目前被子植物有性生殖研究的一个活跃领域[1,2]。随着精细胞分离技术的完善和分离出精细胞的植物类型的增加,目前对精细胞的分子生物学研究已有一些进展,主要是精细胞特异蛋白的分离[3,4]和cDNA文库的构建以及一些精细胞特异基因的分离[5,6]。  相似文献   

16.
Vaughn KC  Renzaglia KS 《Protoplasma》2006,227(2-4):165-173
Summary. Ginkgo biloba and the cycads are the only extant seed plants with motile sperm cells. However, there has been no immunocytochemical characterization of these gametes to determine if they share characteristics with the flagellated sperm found in bryophytes and pteridophytes or might give clues as to the relationships to nonflagellated sperm in all other seed plants. To determine characteristics of proteins associated with the motility apparatus in these motile sperm, we probed thin sections of developing spermatogenous cells of Ginkgo biloba with antibodies to acetylated and tyrosinated tubulin and monoclonal antibodies that recognize mammalian centrosomes and centrin. The blepharoplast that occurs as a precursor to the motility apparatus consists of an amorphous core, pitted with cavities containing microtubules and a surface studded with probasal bodies. The probasal bodies and microtubules within the blepharoplast cavities are labeled with antibodies specific to acetylated tubulin. Positive but weak reactions of the blepharoplast core occur with the centrosomereactive antibodies MPM-2 and C-9. Reactions to centrin antibodies are negative at this developmental stage. From this pre-motility apparatus structure, an assemblage of about 1000 flagella and associated structures arises as the precursor to the motility apparatus for the sperm. The flagellar apparatus consists of a three-layered multilayered structure that subtends a layer of spline microtubules, a zone of amorphous material similar to that in the blepharoplast, and the flagellar band. Centrin antibodies react strongly with the multilayered structure, the transition zone of the flagella, and fibrillar material near the flagellar base at the surface of the amorphous material. Both the spline microtubules and all of the tubules in the flagella react strongly with the antibodies to acetylated tubulin. These localizations are consistent with the localizations of these components in pteridophyte and bryophyte spermatogenous cells, although the blepharoplast material surrounding and connecting flagellar bases does not occur in the seedless (nonseed) land plants. These data indicate that despite the large size of ginkgo gametes and the taxonomic separation between pteridophytes and Ginkgo biloba, similar proteins in gametes of both groups perform similar functions and are therefore homologous among these plants. Moreover, the presence of acetylated tubulin in bands of microtubules may be a characteristic shared with more derived non-flagellated sperm of other conifers and angiosperms. Correspondence and reprints: Southern Weed Science Research Unit, USDA Agricultural Research Service, P.O. Box 350, Stoneville, MS 38776, U.S.A.  相似文献   

17.
Summary The mechanisms by which sperm cells recognize and fuse with the egg and central cell during double fertilization in flowering plants are unknown. To identify membrane surface molecules that might function in fertilization, we immunized mice with isolated sperm ofBrassica campestris and screened the polyclonal sera and monoclonal hybridoma supernatants by immunocytochemistry for binding to isolated sperm cells. We identified three cell lines producing hybridoma supernatants which bind to sperm cell surfaces inB. campestris and further analyzed the properties of one of these, BRSP1. The molecular mass of the epitope to BRSP1 was 54 kDa, and was not glycosylated. Although the antibodies were immunoglobulin M, neither removal of carbohydrates nor competition with antibodies which recognize arabinogalactan decreased binding. BRSP1 recognized sperm ofPlumbago zeylanica, Nicotiana tabacum. Arabidopsis thaliana, andEruca vesicaria and generative cells ofLilium longiflorum and ofNarcissus tazetta but did not recognize sperm ofHelianthus annuus, Gerbera jamesonii, orZea mays. Antibodies to plant sperm allow us to probe sperm membranes for functional components.  相似文献   

18.
高等植物的倾向受精是一个非常吸引人的研究课题,目前对其机理还不清楚。要想探索高等植物倾向受精现象,前提之一是要分离出一定数量的两个精细胞群体作为分子生物学研究方法的材料。以前的研究表明, 烟草(Nicotiana tabacum L.)花粉管中的两个精细胞体积差异明显。这种异型性的精细胞可能与倾向受精有关。烟草是二胞型花粉,生殖细胞只在体内生长的花粉管中才分裂形成两个精细胞。用体内/体外技术培养出花粉管后,爆破花粉管即可释放出花粉管内含物,其中包括两个精细胞。用微量酶液可使两个精细胞分开。然后用显微操作器可挑选出两个大小不同、数量上千的精细胞群体。这种单一纯化的精细胞群体为用分子生物学方法区分两个精细胞的DNA和蛋白质差异打下基础。本研究是高等植物的第二例、二胞花粉植物中的第一例分离两个特定精细胞群体的尝试,为构建烟草两个精细胞的cDNA文库创造了条件。  相似文献   

19.
The selective staining of plasma membranes of plants and porcine spermatozoa given by a mixture consisting of 1% phosphotungstic acid in 10% chromic acid (PACP) applied following periodic acid destaining of glutaraldehyde-osmium tetroxide-fixed electron microscope sections is reduced or eliminated by prior extraction of the tissues with lipid solvents, including ethanol. The ethanol-soluble fraction of sperm contains constituents which restore the PACP-staining reaction when added to ethanol-extracted and lyophilized sperm. Analysis of the ethanol extracts by thin layer chromatography revealed two major components which reacted with both phosphotungstic acid (PTA) and alpha-naphthol detection reagents. These PTA-positive constituents were concentrated in plasma membranes of sperm; components with similar mobilities were found in fractions of plasma membranes from plants. Addition of the PTA-positive constituents from either sperm or plants to extracted and lyophilized sperm restored the PACP staining. The findings are interpreted to mean that one or more low molecular weight constituents (saccharides or glycolipids), rather than glycoproteins, concentrated in plaslma membranes are responsible for the unique PACP staining in both plants and porcine sperm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号