首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental allergic encephalomyelitis (EAE) is the principal animal model of multiple sclerosis (MS), the major inflammatory disease of the central nervous system. Murine EAE is generally either an acute monophasic or relapsing disease. Because the clinical spectrum of MS is more diverse, the limited range of disease subtypes observed in EAE has raised concern regarding its relevance as a model for MS. During the generation of a large F2 mapping population between the EAE-susceptible SJL/J and EAE-resistant B10.S/DvTe inbred lines, we identified four distinct subtypes of murine EAE resembling clinical subtypes seen in MS. We observed acute progressive, chronic/nonremitting, remitting/relapsing, and monophasic remitting/nonrelapsing EAE. An additional subtype, benign EAE, was identified after histologic examination revealed that some mice had inflammatory infiltrates of the central nervous system, but did not show clinical signs of EAE. Genome exclusion mapping was performed to identify the loci controlling susceptibility to each disease subtype. We report three novel EAE-modifying loci on chromosomes 16, 7, and 13 (eae11-13, respectively). Additionally, unique loci with gender-specific effects govern susceptibility to remitting/relapsing (eae12) and monophasic remitting/nonrelapsing (eae7 and 13) EAE.  相似文献   

2.
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination. We transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted OPCs on the functional and pathological manifestations of the disease. Transplanted hWJ-MSC-derived OPCs significantly reduced the clinical signs of EAE. Histological examinations showed that remyelination was significantly increased after transplantation. These results suggest that hWJ-MSC-derived OPCs promote the regeneration of myelin sheaths in the brain.  相似文献   

3.
Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.  相似文献   

4.
《Cytotherapy》2014,16(4):535-544
Background aimsMultiple sclerosis (MS) is considered to be a T-cell–mediated disease. Although MS remits with corticosteroid treatment, the disease relapses on discontinuation of therapy. Human amniotic epithelial cells (hAEC) from the placenta are readily accessible in large quantities and have anti-inflammatory properties. Previously we reported that hAEC given near disease onset ameliorated clinical signs and decreased myelin oligodendrocyte glycoprotein (MOG)-specific immune responses in MOG-induced experimental autoimmune encephalomyelitis (EAE), an experimental MS model.MethodsTo examine the therapeutic effect of hAEC in a clinically relevant setting, we first treated MOG peptide–induced EAE mice with a corticosteroid, prednisolone, in drinking water to induce remission. hAEC were then infused intravenously into the remitted mice. Anti-MOG antibodies in serum were detected by enzyme-linked immunoassay. Splenocyte proliferation was assessed by 3H-thymidine incorporation. Immune cell subpopulations in spleens and lymph nodes and secreted cytokines in splenocyte culture were quantified by flow cytometry. Central nervous system histology was examined with the use of hematoxylin and eosin, Luxol fast blue and immunostaining.ResultsWith cessation of prednisolone treatment, hAEC delayed EAE relapse for 7 days, and, after another 7 days, largely remitted disease in six of eight responder mice. Splenocyte proliferation was suppressed, anti-MOG35–55 antibodies in serum were decreased and interleukin-2 and interleukin-5 production by splenocytes were elevated after hAEC treatment. In the central nervous system, hAEC-treated mice had decreased demyelination and fewer macrophages in the inflammatory infiltrates. hAEC treatment also increased CD4+CD25+FoxP3+ regulatory T cells in inguinal lymph nodes.ConclusionsThese data demonstrate that the therapeutic effects of hAEC after corticosteroid treatment in an MS model probably are the consequence of peripheral immunoregulation. We suggest that hAEC may have potential as a cell therapy for remitted MS.  相似文献   

5.
Experimental allergic encephalomyelitis (EAE) is the animal model for Multiple Sclerosis (MS), the chronic autoimmune disease of the central nervous system (CNS). Activation of NF‐κB requires the activity of IkB kinase (IKK) complex containing (IKKa and IKKb) and the regulatory protein NEMO (NF‐κB essential modifier). Recently it has been shown that peptides corresponding to the NEMO‐binding domain (NBD) of IKKa or IKKb specifically inhibit the induction of NF‐κB activation without inhibiting the basal NF‐κB activity. The present study underlines the importance of cell‐permeable NBD peptides in inhibiting the disease process of adoptively‐transferred EAE in female SJL/J mice. Immunocytochemical analysis of spinal cords of EAE mice showed that there was marked induction of NF‐κB activation as evidenced by enhanced p65 (the RelA subunit of NF‐κB) expression compared to that of control mice. Double‐labelling analysis of p65 and cell‐specific markers showed that p65 was mainly expressed by astrocytes, microglia and infiltrating macrophages. Next we examined the effect of NBD peptides on the disease process of EAE. Interestingly, clinical symptoms of EAE were much lower in mice receiving wild type NBD peptides. In contrast, mutated NBD peptides had no effect on the clinical symptoms of EAE. Taken together, our results support the conclusion that activation of NF‐κB participates in the disease process of EAE and that inhibitors of NF‐κB activation may ameliorate the neuroinflammatory disease process in MS patients. Acknowledgements: This study was supported by NIH grants (NS39940 and AG19487.  相似文献   

6.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell (NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs.  相似文献   

7.
Experimental allergic encephalomyelitis (EAE) is the animal model for Multiple Sclerosis (MS), the chronic autoimmune disease of the central nervous system (CNS). Activation of NF-κB requires the activity of IkB kinase (IKK) complex containing (IKKa and IKKb) and the regulatory protein NEMO (NF-κB essential modifier). Recently it has been shown that peptides corresponding to the NEMO-binding domain (NBD) of IKKa or IKKb specifically inhibit the induction of NF-κB activation without inhibiting the basal NF-κB activity. The present study underlines the importance of cell-permeable NBD peptides in inhibiting the disease process of adoptively-transferred EAE in female SJL/J mice. Immunocytochemical analysis of spinal cords of EAE mice showed that there was marked induction of NF-κB activation as evidenced by enhanced p65 (the RelA subunit of NF-κB) expression compared to that of control mice. Double-labelling analysis of p65 and cell-specific markers showed that p65 was mainly expressed by astrocytes, microglia and infiltrating macrophages. Next we examined the effect of NBD peptides on the disease process of EAE. Interestingly, clinical symptoms of EAE were much lower in mice receiving wild type NBD peptides. In contrast, mutated NBD peptides had no effect on the clinical symptoms of EAE. Taken together, our results support the conclusion that activation of NF-κB participates in the disease process of EAE and that inhibitors of NF-κB activation may ameliorate the neuroinflammatory disease process in MS patients.
Acknowledgements:   This study was supported by NIH grants (NS39940 and AG19487.  相似文献   

8.

Background

Experimental autoimmune encephalomyelitis (EAE) is the most commonly studied animal model of multiple sclerosis (MS), a chronic autoimmune demyelinating disorder of the central nervous system. Immunomodulatory and immunosuppressive therapies currently approved for the treatment of MS slow disease progression, but do not prevent it. A growing body of evidence suggests additional mechanisms contribute to disease progression. We previously demonstrated the amelioration of myelin oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6 mice by 670 nm light-induced photobiomodulation, mediated in part by immune modulation. Numerous other studies demonstrate that near-infrared/far red light is therapeutically active through modulation of nitrosoxidative stress. As nitric oxide has been reported to play diverse roles in EAE/MS, and recent studies suggest that axonal loss and progression of disability in MS is mediated by nitrosoxidative stress, we investigated the effect of 670 nm light treatment on nitrosative stress in MOG-induced EAE.

Methodology

Cell culture experiments demonstrated that 670 nm light-mediated photobiomodulation attenuated antigen-specific nitric oxide production by heterogenous lymphocyte populations isolated from MOG immunized mice. Experiments in the EAE model demonstrated down-regulation of inducible nitric oxide synthase (iNOS) gene expression in the spinal cords of mice with EAE over the course of disease, compared to sham treated animals. Animals receiving 670 nm light treatment also exhibited up-regulation of the Bcl-2 anti-apoptosis gene, an increased Bcl-2:Bax ratio, and reduced apoptosis within the spinal cord of animals over the course of disease. 670 nm light therapy failed to ameliorate MOG-induced EAE in mice deficient in iNOS, confirming a role for remediation of nitrosative stress in the amelioration of MOG-induced EAE by 670 nm mediated photobiomodulation.

Conclusions

These data indicate that 670 nm light therapy protects against nitrosative stress and apoptosis within the central nervous system, contributing to the clinical effect of 670 nm light therapy previously noted in the EAE model.  相似文献   

9.
Experimental allergic encephalomyelitis (EAE), an experimental autoimmune disease of the central nervous system (CNS), is readily induced in many mammalian species by immunization with CNS tissue or myelin basic protein (MBP) purified from the CNS. EAE has been frequently used as a model for multiple sclerosis (MS). However, EAE generally presents as an acute monophasic disease in the adult animal after immunization with MBP. After recovery, the animal is resistant to rechallenge with encephalitogen (1). Two exceptions to these observations have been reported. McFarlin et al. (2) reported that a variable number of Lewis rats showed signs of a single, mild relapse about a week after recovery from MBP-induced acute EAE. Panitch and Ciccone (3) have reported induction of recurrent EAE in rats immunized with human MBP. Chronic, relapsing EAE has been induced in the mouse; however, an apparent requirement for CNS tissue had been noted (4, 5). Recently, during the course of a series of experiments on the induction of EAE in SJL/J, PL/J, and (SJL/J X PL/J)F1 (SPL F1) mice, it was observed that the F1 mice frequently had paralytic relapses after recovery from MBP-induced symptoms. Experiments were initiated to examine this phenomenon, and the findings are presented below.  相似文献   

10.
BackgroundMultiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Limited availability of human tissue underscores the importance of animal models to study the pathology of MS.MethodsTwenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord.ResultsB6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. In addition, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation.ConclusionsOur results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse histopathological aspects of MS.  相似文献   

11.
12.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) and has been used as an animal model for study of the human demyelinating disease, multiple sclerosis (MS). EAE is characterized by pathologic infiltration of mononuclear cells into the CNS and by clinical manifestation of paralytic disease. Similar to MS, EAE is also under genetic control in that certain mouse strains are susceptible to disease induction while others are resistant. Typically, C57BL/6 (H-2(b)) mice immunized with myelin basic protein (MBP) fail to develop paralytic signs. This unresponsiveness is certainly not due to defects in antigen processing or antigen presentation of MBP, as an experimental protocol described here had been used to induce severe EAE in C57BL/6 mice as well as other reputed resistant mouse strains. In addition, encephalitogenic T cell clones from C57BL/6 and Balb/c mice reactive to MBP had been successfully isolated and propagated. The experimental protocol involves using a cellular adoptive transfer system in which MBP-primed (200 μg/mouse) C57BL/6 donor lymph node cells are isolated and cultured for five days with the antigen to expand the pool of MBP-specific T cells. At the end of the culture period, 50 million viable cells are transferred into naive syngeneic recipients through the tail vein. Recipient mice so treated normally do not develop EAE, thus reaffirming their resistant status, and they can remain normal indefinitely. Ten days post cell transfer, recipient mice are challenged with complete Freund adjuvant (CFA)-emulsified MBP in four sites in the flanks. Severe EAE starts to develop in these mice ten to fourteen days after challenge. Results showed that the induction of disease was antigenic specific as challenge with irrelevant antigens did not induce clinical signs of disease. Significantly, a titration of the antigen dose used to challenge the recipient mice showed that it could be as low as 5 μg/mouse. In addition, a kinetic study of the timing of antigenic challenge showed that challenge to induce disease was effective as early as 5 days post antigenic challenge and as long as over 445 days post antigenic challenge. These data strongly point toward the involvement of a "long-lived" T cell population in maintaining unresponsiveness. The involvement of regulatory T cells (Tregs) in this system is not defined.  相似文献   

13.
Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach.  相似文献   

14.

Background

Multiple sclerosis (MS) is an immune mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process.

Methods

We transplanted human embryonic stem cells (hESC)-derived early multipotent neural precursors (NPs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease.

Results

Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node–derived T cells in response to nonspecific polyclonal stimuli.

Conclusions

The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS.  相似文献   

15.
B cells, plasma cells, and antibodies are commonly found in active central nervous system (CNS) lesions in patients with multiple sclerosis (MS). B cells isolated from CNS lesions as well as from the cerebrospinal fluid (CSF) show signs of clonal expansion and hypermutation, suggesting their local activation. Plasma blasts and plasma cells maturating from these B cells were recently identified to contribute to the development of oligoclonal antibodies produced within the CSF, which remain a diagnostic hallmark finding in MS. Within the CNS, antibody deposition is associated with complement activation and demyelination, indicating antigen recognition-associated effector function. While some studies indeed implied a disease-intrinsic and possibly pathogenic role of antibodies directed against components of the myelin sheath, no unequivocal results on a decisive target antigen within the CNS persisted to date. The notion of a pathogenic role for antibodies in MS is nevertheless empirically supported by the clinical benefit of plasma exchange in patients with histologic signs of antibody deposition within the CNS. Further, such evidence derives from the animal model of MS, experimental autoimmune encephalomyelitis (EAE). In transgenic mice endogenously producing myelin-specific antibodies, EAE severity was substantially increased accompanied by enhanced CNS demyelination. Further, genetic engineering in mice adding T cells that recognize the same myelin antigen resulted in spontaneous EAE development, indicating that the coexistence of myelin-specific B cells, T cells, and antibodies was sufficient to trigger CNS autoimmune disease. In conclusion, various pathological, clinical, immunological, and experimental findings collectively indicate a pathogenic role of antibodies in MS, whereas several conceptual challenges, above all uncovering potential target antigens of the antibody response within the CNS, remain to be overcome.  相似文献   

16.
The autoimmune immunopathology occurring in multiple sclerosis (MS) is sustained by myelin-specific and -nonspecific CD8+ T cells. We have previously shown that, in MS, activated T cells undergoing apoptosis induce a CD8+ T cell response directed against antigens that are unveiled during the apoptotic process, namely caspase-cleaved structural proteins such as non-muscle myosin and vimentin. Here, we have explored in vivo the development and the function of the immune responses to cryptic apoptosis-associated epitopes (AEs) in a well-established mouse model of MS, experimental autoimmune encephalomyelitis (EAE), through a combination of immunization approaches, multiparametric flow cytometry, and functional assays. First, we confirmed that this model recapitulated the main findings observed in MS patients, namely that apoptotic T cells and effector/memory AE-specific CD8+ T cells accumulate in the central nervous system of mice with EAE, positively correlating with disease severity. Interestingly, we found that AE-specific CD8+ T cells were present also in the lymphoid organs of unprimed mice, proliferated under peptide stimulation in vitro, but failed to respond to peptide immunization in vivo, suggesting a physiological control of this response. However, when mice were immunized with AEs along with EAE induction, AE-specific CD8+ T cells with an effector/memory phenotype accumulated in the central nervous system, and the disease severity was exacerbated. In conclusion, we demonstrate that AE-specific autoimmunity may contribute to immunopathology in neuroinflammation.Subject terms: Cell death and immune response, Immunological disorders  相似文献   

17.
Although typically associated with onset in young adults, multiple sclerosis (MS) also attacks the elderly, which is termed late‐onset MS. The disease can be recapitulated and studied in a mouse model, experimental autoimmune encephalomyelitis (EAE). The onset of induced EAE is delayed in aged mice, but disease severity is increased relative to young EAE mice. Given that CD4+FoxP3+ regulatory T (Treg) cells play an ameliorative role in MS/EAE severity, and the aged immune system accumulates peripheral Treg (pTreg) cells, failure of these cells to prevent or ameliorate EAE disease is enigmatic. When analyzing the distribution of Treg cells in EAE mice, the aged mice exhibited a higher proportion of polyclonal (pan‐) pTreg cells and a lower proportion of antigen‐specific pTreg cells in the periphery but lower proportions of both pan‐ and antigen‐specific Treg cells in the central nervous system (CNS). Furthermore, in the aged inflamed CNS, CNS‐Treg cells exhibited a higher plasticity, and T effector (CNS‐Teff) cells exhibited greater clonal expansion, disrupting the Treg/Teff balance. Transiently inhibiting FoxP3 or depleting pTreg cells partially corrected Treg distribution and restored the Treg/Teff balance in the aged inflamed CNS, thereby ameliorating the disease in the aged EAE mice. These results provide evidence and mechanism that accumulated aged pTreg cells play a detrimental role in neuronal inflammation of aged MS.  相似文献   

18.
Multiple sclerosis (MS) is a chronic autoimmune demyelinating neurodegenerative central nervous system disorder. The aim of the present study was to investigate the prophylactic effect exerted by the one‐time intraperitoneal injection of mesenchymal stem cells (MSCs) 1 × 106 and 14‐day intraperitoneal injection of methylprednisolone (MP) 40 mg/kg in an experimental autoimmune encephalomyelitis (EAE). EAE was induced by intradermal injection of rat spinal cord homogenate with complete Freund's adjuvant in Swiss mice. Results of MSCs and MP‐treated mice showed a significantly milder disease and fewer clinical scores compared to control mice. They suppressed tumor necrosis factor‐alpha and myeloperoxidase and increased interleukin 10, whereas thiobarbituric acid reactive substances and nitric oxide brain contents were reduced to comparable levels between treatment groups. Brain content of GSH was significantly higher in MSCs‐treated mice than control mice. It is evident that MSCs have relevant prophylactic effect in an animal model of MS and might represent a valuable tool for stem cell based therapy in MS.  相似文献   

19.

Objectives

Oxidative stress plays an important role in the pathogenesis of multiple sclerosis (MS). Though reactive oxygen species (ROS) are produced by various mechanisms, xanthine oxidase (XO) is a major enzyme generating ROS in the context of inflammation. The objectives of this study were to investigate the involvement of XO in the pathogenesis of MS and to develop a potent new therapy for MS based on the inhibition of ROS.

Methods

XO were assessed in a model of MS: experimental autoimmune encephalomyelitis (EAE). The contribution of XO-generated ROS to the pathogenesis of EAE was assessed by treating EAE mice with a novel XO inhibitor, febuxostat. The efficacy of febuxostat was also examined in in vitro studies.

Results

We showed for the first time that the expression and the activity of XO were increased dramatically within the central nervous system of EAE mice as compared to naïve mice. Furthermore, prophylactic administration of febuxostat, a XO inhibitor, markedly reduced the clinical signs of EAE. Both in vivo and in vitro studies showed infiltrating macrophages and microglia as the major sources of excess XO production, and febuxostat significantly suppressed ROS generation from these cells. Inflammatory cellular infiltration and glial activation in the spinal cord of EAE mice were inhibited by the treatment with febuxostat. Importantly, therapeutic efficacy was observed not only in mice with relapsing-remitting EAE but also in mice with secondary progressive EAE by preventing axonal loss and demyelination.

Conclusion

These results highlight the implication of XO in EAE pathogenesis and suggest XO as a target for MS treatment and febuxostat as a promising therapeutic option for MS neuropathology.  相似文献   

20.
Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease in the central nervous system (CNS). Melatonin is an effective treatment in MS patients and experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Melatonin secretion peaks at 2 AM, concomitant with the time at which the muscles are resting and the body is exerting its antioxidant activity. The current study was designed to investigate combination treatment of baclofen, a muscle relaxant drug, and melatonin in EAE mice. Results showed that melatonin (Mel) alone or in combination with baclofen (Bac + Mel) reduced clinical scores and demyelination by significantly increasing myelin oligodendrocyte glycoprotein (MOG) levels, a marker for mature oligodendrocytes, compared to EAE mice. Moreover, Mel or Bac + Mel therapy caused a significant increase in IL-4 serum levels, an anti-inflammatory cytokine, whereas IFN-γ serum levels, a pro-inflammatory cytokine, were significantly reduced. On the other hand, Mel or Bac + Mel caused a significant reduction in malondialdehyde (MDA) levels, a marker of oxidative stress, in comparison to EAE mice. In contrast, the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) was significantly increased in Mel and Bac + Mel groups. In summary, combination therapy improved clinical scores and tend to enhance the efficiency of melatonin treatment by further promoting remyelination, decreasing inflammation, and stimulating the activity of antioxidant enzymes, which suggests that prior spasticity treatment increases the efficacy of melatonin therapy in EAE mouse model of MS. Further experimental and clinical studies are needed to ensure the beneficial role of this combination strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号