首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Withania somnifera (ashwagandha) is a rich repository of large number of pharmacologically active secondary metabolites known as withanolides. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, but there is sparse information about the genes responsible for biosynthesis of these compounds. In this study, we have cloned and characterized a gene encoding squalene synthase (EC 2.5.1.21) from a withaferin A rich variety of W. somnifera, a key enzyme in the biosynthesis of isoprenoids. Squalene synthase catalyses dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for sterols and triterpenes. A full-length cDNA consisting of 1765 bp was isolated and contained a 1236 bp open reading frame (ORF) encoding a polypeptide of 411 amino acids. Recombinant C-terminus truncated squalene synthase (WsSQS) was expressed in BL21 cells (Escherichia coli) with optimum expression induced with 1mM IPTG at 37°C after 1h. Quantitative RT-PCR analysis showed that squalene synthase (WsSQS) expressed in all tested tissues including roots, stem and leaves with the highest level of expression in leaves. The promoter region of WsSQS isolated by genome walking presented several cis-acting elements in the promoter region. Biosynthesis of withanolides was up-regulated by different signalling components including methyl-jasmonate, salicylic acid and 2, 4-D, which was consistent with the predicted results of WsSQS promoter region. This work is the first report of cloning and expression of squalene synthase from W. somnifera and will be useful to understand the regulatory role of squalene synthase in the biosynthesis of withanolides.  相似文献   

2.
3.
4.
Medicinal plants are extensively utilized in traditional and herbal medicines, both in India and around the world due to the presence of diverse low molecular weight natural products such as flavonoids, alkaloids, terpenoids and sterols. Flavonoids which have health benefits for humans are the large class of phenylpropanoid-derived secondary metabolites and are mostly glycosylated by UDP-glycosyltransferases (UGTs). Although large numbers of different UGTs are known from higher plants, very few protein structures have been reported till now. In the present study, the three-dimensional model of flavonoid specific glycosyltransferases (WsFGT) from Withania somnifera was constructed based on the crystal structure of plant UGTs. The resulted model was assessed by various tools and the final refined model revealed GT-B type fold. Further, to understand the sugar donors and acceptors interactions with the active site of WsFGT, docking studies were performed. The amino acids from conserved PSPG box were interacted with sugar donor while His18, Asp110, Trp352 and Asn353 were important for catalytic function. This structural and docking information will be useful to understand the glycosylation mechanism of flavonoid glucosides.

Abbreviations

DOPE - Discrete Optimized Potential Energy, PDB - Protein Data Bank, PSPG - Plant Secondary Product Glycosyltransferase, RMSD - Root Mean Squared Deviation, UDP - Uridine diphosphate, UGT - UDP-glycosyltransferases.  相似文献   

5.
Two new and seven known withanolides along with beta-sitosterol, stigmasterol, beta-sitosterol glucoside, stigmasterol glucoside, alpha+beta glucose were isolated from the roots of Withania somnifera. Among the known compounds, Viscosa lactone B, stigmasterol, stigmasterol glucoside and alpha+beta glucose are being reported from the roots of W. somnifera for the first time. One of the new compounds contained the rare 16beta-acetoxy-17(20)-ene the other contained unusual 6alpha-hydroxy-5,7alpha-epoxy functional groups in the withasteroid skeleton. The structures were elucidated by spectroscopic methods and chemical transformations.  相似文献   

6.
A chlorinated withanolide, 6α-chloro-5β,17α-dihydroxywithaferin A (1), and nine known withanolides, 6α-chloro-5β-hydroxywithaferin A (2), (22R)-5β-formyl-6β,27-dihydroxy-1-oxo-4-norwith-24-enolide, withaferin A, 2,3-dihydrowithaferin A, 3-methoxy-2,3-dihydrowithaferin A, 2,3-didehydrosomnifericin, withanone, withanoside IV and withanoside X, were isolated from Withania somnifera (Solanaceae). All structures were elucidated on the basis of spectroscopic methods (IR, HRESIMS, 1D/2D NMR). X-ray crystallography confirmed the absolute configuration of 1.  相似文献   

7.
The chaga mushroom Inonotus obliquus has been widely used as a folk medicine in Russia, Poland and most of the Baltic countries. The total triterpene saponins of I. obliquus have significant pharmacological activity. Though the triterpene component has been well characterized in terms of its pharmaceutical activity, there is little information on the genes responsible for the biosynthesis of these compounds in I. obliquus. Squalene synthase represents a potential branching point and the first committed step to diverge the carbon flux from the main isoprenoid pathway towards sterol biosynthesis. In this study, we cloned and characterized squalene synthase from I. obliquus. A 1476-bp full-length cDNA consisting of the entire coding region of squalene synthase (GenBank accession number is KC182754) was cloned by RT-PCR. The DNA sequence showed as much as 76 % similarity with the sequence of Fomitiporia mediterranea squalene synthase, and phylogenetic analysis indicated that it is most closely related to F. mediterranea squalene synthase at both DNA and protein levels. I. obliquus squalene synthase was actively expressed in the yeast Pichia pastoris as a secreted form and purified by gel filtration using Superdex G-75 column. The purified recombinant squalene synthase was able to convert farnesyl diphosphate (FPP) to squalene in an NADPH-dependent reaction. The result of this study could serve as an important step toward the manipulation of triterpenoids biosynthesis in I. obliquus at the level of squalene through engineering better SQS for reintroduction into the mushroom.  相似文献   

8.
A phospholipase inhibitor (WSG) has been purified from Withania somnifera using gel-filtration and ion-exchange chromatographies. The WSG is an acidic glycoprotein. Its molecular mass as determined by SDS-PAGE was 27kDa. It neutralized the enzyme activity and pharmacological properties such as cytotoxicity, edema, and myotoxicity of a multi-toxic Indian cobra venom phospholipase (NNXIa-PLA) but failed to neutralize the neurotoxicity. The glycan part of the molecule does not appear to be involved in any of the pharmacological properties studied. The results suggest that the neutralization of the pharmacological effects of the toxic phospholipase is brought about by inhibition of the enzyme activity by formation of a complex between the WSG and the toxic phospholipase. We report the purification and characterization of a glycoprotein phospholipase A inhibitor from Withania somnifera, medicinal plant.  相似文献   

9.
Flavonoids are a large class of phenylpropanoid-derived secondary metabolites, which are usually glycosylated by UDP-glycosyltransferases with one or more sugar groups. Here, we report the cloning and biochemical characterization of a flavonoid glycosyltransferase gene from Withania somnifera (WsGT), which is an important medicinal plant used in Ayurvedic formulations. Using PCR primers, designed for a highly conserved region of previously reported glycosyltransferases, we were able to isolate the corresponding fragment of the WsGT gene. Rapid amplification of cDNA ends (RACE) was then employed to isolate full-length cDNA, which had an open reading frame of 1,371 bp that encode for 456 amino acids. Phylogenetic analysis indicated that WsGT was similar to that of family 1 GT-B glycosyltransferase. Biochemical analysis revealed that WsGT interacts with UDP-glucose and was capable of regiospecifically glycosylating flavonoid-7-ols, such as apigenin, naringenin, luteolin, diadzein and genistein. Expression profiling studies showed that WsGT was highly expressed in young and mature leaves of W. somnifera. Furthermore, exposure to salicylic acid enhanced the expression of WsGT in the leaves and heat shock treatment resulted in decreased expression of WsGT after an initial increase. This may suggest the role of WsGT in response to abiotic/biotic stresses.  相似文献   

10.
In vitro callus induction and regeneration studies in Withania somnifera   总被引:1,自引:0,他引:1  
Callus cultures were initiated from axillary leaves, axillary shoots, hypocotyls, and root segments on Murashige and Skoog (MS) (1962) medium supplemented with 2,4-D (2 mg l−1) and KN (0.2 mg l−1). Shoots differentiated best from axillary shoot base callus on MS medium containing BA (2 mg l−1). Regenerated shoots rooted best on MS medium containing IBA (2 mg l−1) alone, and IBA (2 mg l−1) with IAA (2 mg l−1). Plantlets were transferred to pots containing sand and soil mixture, acclimatized in a culture room and afterwards transferred to the glasshouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Four (1, 8-10) and six known (2-7) withanolides were isolated from the leaves of Withania somnifera. Among the new compounds, 10 possessed the rare 3-O-sulfate group with the saturation in A ring and 9 contained unusual 1,4-dien-3-one group. Compound 8 did not have usual 2,3 unsaturation in A ring while 1 had the rare C-16 double bond. The structures of all the compounds were elucidated by spectroscopic methods and chemical transformation.  相似文献   

12.
In an attempt to maximize production and the structural diversity of plant metabolites, the effect of growing the medicinal plant Withania somnifera under soil-less aeroponic conditions on its ability to produce withaferin A and withanolides was investigated. It resulted in the isolation and characterization of two compounds, 3α-(uracil-1-yl)-2,3-dihydrowithaferin A (1) and 3β-(adenin-9-yl)-2,3-dihydrowithaferin A (2), in addition to 10 known withanolides including 2,3-dihydrowithaferin A-3β-O-sulfate. 3β-O-Butyl-2,3-dihydrowithaferin A (3), presumably an artifact formed from withaferin A during the isolation process was also encountered. Reaction of withaferin A with uracil afforded 1 and its epimer, 3β-(uracil-1-yl)-2,3-dihydrowithaferin A (4). The structures of these compounds were elucidated on the basis of their high resolution mass and NMR spectroscopic data.  相似文献   

13.
Shoot multiplication was achieved in vitro from shoot tips of aseptically germinated seedlings of Withania somnifera L. using low concentrations of 6-benzyladenine (BA), viz. 2.2, 4.4 and 8.9 M. Maximum number of shoots were obtained when 2.3 M 2,4-dichlorophenoxyacetic acid (2,4-D) or 2.5 M indolebutyric acid (IBA) was added to medium containing 4.4 M BA during initiation of shoot multiplication, but not when added later. Direct multiple shoot initiation was also obtained from germinating seeds in the presence of BA alone. Rooting was successful in excised shoots grown on growth regulator-free MS medium. Rooted shoots were successfully established in soil in a greenhouse.  相似文献   

14.
15.
16.
Molecular Biology Reports - Ashwagandha (Withania somnifera (L.) Dunal), popularly known as Indian ginseng or winter cherry is a multipurpose plant of immense therapeutic value in the ayurvedic and...  相似文献   

17.
This report provides the complete nucleotide sequences of the full-length cDNA encoding squalene synthase (SQS) and its genomic DNA sequence from a triterpene-producing fungus, Ganoderma lucidum. The cDNA of the squalene synthase (SQS) (GenBank Accession Number: DQ494674) was found to contain an open reading frame (ORF) of 1,404 bp encoding a 468-amino-acid polypeptide, whereas the SQS genomic DNA sequence (GenBank Accession Number: DQ494675) consisted of 1,984 bp and contained four exons and three introns. Only one gene copy was present in the G lucidum genome. The deduced amino acid sequence of Ganoderma lucidum squalene synthase (Gl-SQS) exhibited a high homology with other fungal squalene synthase genes and contained six conserved domains. A phylogenetic analysis revealed that G. lucidum SQS belonged to the fungi SQS group, and was more closely related to the SQS of U. maydis than to those of other fungi. A gene expression analysis showed that the expression level was relatively low in mycelia incubated for 12 days, increased after 14 to 20 days of incubation, and reached a relatively high level in the mushroom primordia. Functional complementation of Gl-SQS in a SQS-deficient strain of Saccharomyces cerevisiae confirmed that the cloned cDNA encoded a squalene synthase.  相似文献   

18.
Seven steroidal lactones of the withanolide series have been isolated as minor constituents of the leaves of Withania somnifera Dun. (Solanaceae) chemotype I, along with the major component withaferin A. Structures have been assigned to the new compounds: withanolide N (17α,27-dihydroxy-1-oxo-20R,22R-witha-2,5,14,24-tetraenolide) (6a) and withanolide O (4β,17α-dihydroxy-1-oxo-20R,22R-witha-2,5,8(14),24-tetraenolide) (7a). Similarly the leaves of W. somnifera chemotype II afforded three new withanolides along with the major component withanolide D (9a) and trace amounts of withanolide G (10). The new compounds are: 27-hydroxywithanolide D(4β,20α,27-trihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide) (11a), 14α-hydroxywithanolide D (4β,14α,20α-trihydroxy-1-oxo-5β,6β-epoxy-20R,22R-witha-2,24-dienolide) (12a) and 17α-hydroxywithanolide D (4β,17β,20α-trihydroxy-1-oxo-5β,6β-epoxy-20S,22R-witha-2,24-dienolide) (13a). Whereas all the withanolides of chemotype I are unsubstituted at C-20 (20α-H), those of chemotype II possess an OH at this position (20α-OH).  相似文献   

19.
Withania somnifera (L.) is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicines. Pharmaceutical activities of this herb are associated with presence of secondary metabolites known as withanolides, a class of phytosteroids synthesized via mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate pathways. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the genes responsible for biosynthesis of these compounds. In this study, we have characterized two genes encoding 1-deoxy-d-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7) and 1-deoxy-d-xylulose-5-phosphate reductase (DXR; EC 1.1.1.267) enzymes involved in the biosynthesis of isoprenoids. The full-length cDNAs of W. somnifera DXS (WsDXS) and DXR (WsDXR) of 2,154 and 1,428 bps encode polypeptides of 717 and 475 amino acids residues, respectively. The expression analysis suggests that WsDXS and WsDXR are differentially expressed in different tissues (with maximal expression in flower and young leaf), chemotypes of Withania, and in response to salicylic acid, methyl jasmonate, as well as in mechanical injury. Analysis of genomic organization of WsDXS shows close similarity with tomato DXS in terms of exon–intron arrangements. This is the first report on characterization of isoprenoid biosynthesis pathway genes from Withania.  相似文献   

20.
Sterol glycosyltransferases catalyze the synthesis of diverse glycosteroids in plants, leading to a change in their participation in cellular metabolism. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a cytosolic sterol glucosyltransferase was purified 3406 fold to near homogeneity from W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme was active with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols and phytosterols with 3beta-OH group. It showed a low level of activity with flavonoids and isoflavonoids. The enzyme gave maximum K(cat)/K(m) value (0.957) for 24-methylenecholesterol that resembles aglycone structure of pharmacologically important sitoindosides VII and VIII from W. somnifera. The enzyme follows ordered sequential bisubstrate mechanism of reaction, in which UDP-glucose and sterol are the first and second binding substrates. This is the first detailed kinetic study on purified plant cytosolic sterol glucosyltransferases. Results on peptide mass fingerprinting and substrate specificity suggested that the enzyme belongs to the family of secondary metabolite glucosylating glucosyltransferases. The enzyme activity exhibited a rapid in vivo response to high temperature and salicylic acid treatment of plants, suggesting its physiological role in abiotic and biotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号