首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A potent therapeutic T-cell vaccine may be an alternative treatment of chronic hepatitis B virus (HBV) infection. Previously, we developed a DNA prime-adenovirus (AdV) boost vaccination protocol that could elicit strong and specific CD8+ T-cell responses to woodchuck hepatitis virus (WHV) core antigen (WHcAg) in mice. In the present study, we first examined whether this new prime-boost immunization could induce WHcAg-specific T-cell responses and effectively control WHV replication in the WHV-transgenic mouse model. Secondly, we evaluated the therapeutic effect of this new vaccination strategy in chronically WHV-infected woodchucks in combination with a potent antiviral treatment. Immunization of WHV-transgenic mice by DNA prime-AdV boost regimen elicited potent and functional WHcAg-specific CD8+ T-cell response that consequently resulted in the reduction of the WHV load below the detection limit in more than 70% of animals. The combination therapy of entecavir (ETV) treatment and DNA prime-AdV boost immunization in chronic WHV carriers resulted in WHsAg- and WHcAg-specific CD4+ and CD8+ T-cell responses, which were not detectable in ETV-only treated controls. Woodchucks receiving the combination therapy showed a prolonged suppression of WHV replication and lower WHsAg levels compared to controls. Moreover, two of four immunized carriers remained WHV negative after the end of ETV treatment and developed anti-WHs antibodies. These results demonstrate that the combined antiviral and vaccination approach efficiently elicited sustained immunological control of chronic hepadnaviral infection in woodchucks and may be a new promising therapeutic strategy in patients.  相似文献   

2.
Woodchuck hepatitis virus (WHV) and hepatitis B virus (HBV) are closely similar with respect to genomic organization, host antiviral responses, and pathobiology of the infection. T-cell immunity against viral nucleocapsid (HBcAg or WHcAg) has been shown to play a critical role in viral clearance and protection against infection. Here we show that vaccination of healthy woodchucks by gene gun bombardment with a plasmid coding for WHcAg (pCw) stimulates proliferation of WHcAg-specific T cells but that these cells do not produce significant levels of gamma interferon (IFN-gamma) upon antigen stimulation. In addition, animals vaccinated with pCw alone were not protected against WHV inoculation. In order to induce a Th1 cytokine response, another group of woodchucks was immunized with pCw together with another plasmid coding for woodchuck interleukin-12 (IL-12). These animals exhibited WHcAg-specific T-cell proliferation with high IFN-gamma production and were protected against challenge with WHV, showing no viremia or low-level transient viremia after WHV inoculation. In conclusion, gene gun immunization with WHV core generates a non-Th1 type of response which does not protect against experimental infection. However, steering the immune response to a Th1 cytokine profile by IL-12 coadministration achieves protective immunity. These data demonstrate a crucial role of Th1 responses in the control of hepadnavirus replication and suggest new approaches to inducing protection against HBV infection.  相似文献   

3.
DNA vaccination can induce humoral and cellular immune response to viral antigens and confer protection to virus infection. In woodchucks, we tested the protective efficacy of immune response to woodchuck hepatitis core antigen (WHcAg) and surface antigen (WHsAg) of woodchuck hepatitis virus (WHV) elicited by DNA-based vaccination. Plasmids pWHcIm and pWHsIm containing WHV c- or pre-s2/s genes expressed WHcAg and WHsAg in transient transfection assays. Pilot experiments in mice revealed that a single intramuscular injection of 100 μg of plasmid pWHcIm DNA induced an anti-WHcAg titer over 1:300 that was enhanced by boost injections. However, two injections of 100 μg of pWHcIm did not induce detectable anti-WHcAg in woodchucks. With an increase in the dose to 1 mg of pWHcIm per injection, transient anti-WHcAg response and WHcAg-specific proliferation of peripheral mononuclear blood cells (PMBCs) appeared in woodchucks after repeated immunizations. Four woodchucks vaccinated with pWHcIm were challenged with 104 or 105 of the WHV 50% infective dose. They remained negative for markers of WHV replication (WHV DNA and WHsAg) in peripheral blood and developed anti-WHs in week 5 after challenge. In contrast, woodchucks not immunized or immunized with the control vector pcDNA3 developed acute WHV infection. Two woodchucks immunized with 1 mg of pWHsIm developed WHsAg-specific proliferative response of PBMCs but no measurable anti-WHsAg response. A rapid anti-WHsAg response developed during week 2 after virus challenge. Neither woodchuck developed any signs of WHV infection. These data indicate that DNA-based vaccination with WHcAg and WHsAg can elicit immunity to WHV infection.  相似文献   

4.
DNA vaccinations are able to induce strong cellular immune responses in mice and confer protection against infectious agents. However, DNA vaccination of large animals appears to be less effective and requires repeated injections of large amounts of plasmid DNA. Enhancement of the efficiency of DNA vaccines may be achieved by coapplication of cytokine-expressing plasmids. Here we investigated, with woodchucks, whether coadministration of an expression plasmid for woodchuck gamma interferon (IFN-gamma), pWIFN-gamma, can improve DNA vaccination with woodchuck hepatitis virus core antigen (WHcAg). Animals were immunized with pWHcIm (a plasmid expressing WHcAg) alone or with a combination of pWHcIm and pWIFN-gamma using a gene gun. Six weeks postimmunization, all animals were challenged with 10(5) genome equivalents of woodchuck hepatitis virus (WHV). The antibody and lymphoproliferative immune responses to WHV proteins were determined after immunization and after challenge. Vaccination with pWHcIm and pWIFN-gamma led to a pronounced lymphoproliferative response to WHcAg and protected woodchucks against subsequent virus challenge. Two of three animals vaccinated with pWHcIm alone did not show a detectable lymphoproliferative response to WHcAg. A low-level WHV infection occurred in these woodchucks after challenge, as WHV DNA was detectable in the serum by PCR. None of the pWHcIm-vaccinated animals showed an anti-WHcAg antibody response after DNA vaccination or an anamnestic response after virus challenge. Our results indicate that coadministration of the WIFN-gamma gene with pWHcIm enhanced the specific cellular immune response and improved the protective efficacy of WHV-specific DNA vaccines.  相似文献   

5.
Specific activation of T cells appears to be a prerequisite for viral clearance during hepatitis B virus (HBV) infection. The T-cell response to HBV core protein is essential in determining an acute or chronic outcome of HBV infection, but how this immune response contributes to the course of infection remains unclear. This is due to results obtained from humans, which are restricted to phenomenological observations occurring during the clinical onset after HBV infection. Thus, a useful animal model is needed. Characterization of the T-cell response to the core protein (WHcAg) of woodchuck hepatitis virus (WHV) in woodchucks contributes to the understanding of these mechanisms. Therefore, we investigated the response of woodchuck peripheral blood mononuclear cells (PBMCs) to WHcAg and WHcAg-derived peptides, using our 5-bromo-2'-deoxyuridine assay. We demonstrated WHcAg-specific proliferation of PBMCs and nylon wool-nonadherent cells from acutely WHV-infected woodchucks. Using a cross-reacting anti-human T-cell (CD3) antiserum, we identified nonadherent cells as woodchuck T cells. T-cell epitope mapping with overlapping peptides, covering the entire WHcAg, revealed T-cell responses of acutely WHV-infected woodchucks to peptide1-20, peptide100-119, and peptide112-131. Detailed epitope analysis in the WHcAg region from amino acids 97 to 140 showed that T cells especially recognized peptide97-110. Establishment of polyclonal T-cell lines with WHcAg or peptide97-110 revealed reciprocal stimulation by peptide97-110 or WHcAg, respectively. We vaccinated woodchucks with peptide97-110 or WHcAg to prove the importance of this immunodominant T-cell epitope. All woodchucks immunized with peptide97-110 or WHcAg were protected. Our results show that the cellular immune response to WHcAg or to one T-cell epitope protects woodchucks from WHV infection.  相似文献   

6.
Menne S  Tennant BC  Gerin JL  Cote PJ 《Journal of virology》2007,81(19):10614-10624
Treatment of chronic hepatitis B virus (HBV) infection could combine potent antiviral drugs and therapeutic vaccines to overcome immunological tolerance and induce the recovery phenotype to protect against disease progression. Conventional vaccination of woodchucks chronically infected with the woodchuck hepatitis virus (WHV) elicited differential T-cell response profiles depending on whether or not carriers were treated with the potent antiviral drug clevudine (CLV), which significantly reduces viral and antigen loads. The differential T-cell responses defined both CLV-dependent and CLV-independent epitopes of the pre-S and S regions of the WHV envelope protein. Only combined treatment involving CLV and conventional vaccine therapeutically restored the T-cell response profile of chronic WHV carrier woodchucks to that seen in prophylactic vaccination and in recovery from acute WHV infection. The results have implications for mechanisms of immunological tolerance operating in chronic HBV infection and suggest that such combined chemoimmunotherapy may be useful for treatment of humans with chronic HBV infection.  相似文献   

7.
The development of therapeutic vaccines for chronic hepatitis B virus (HBV) infection has been hampered by host immune tolerance and the generally low magnitude and inconsistent immune responses to conventional vaccines and proposed new delivery methods. Electroporation (EP) for plasmid DNA (pDNA) vaccine delivery has demonstrated the enhanced immunogenicity of HBV antigens in various animal models. In the present study, the efficiency of the EP-based delivery of pDNA expressing various reporter genes first was evaluated in normal woodchucks, and then the immunogenicity of an analog woodchuck hepatitis virus (WHV) surface antigen (WHsAg) pDNA vaccine was studied in this model. The expression of reporter genes was greatly increased when the cellular uptake of pDNA was facilitated by EP. The EP of WHsAg-pDNA resulted in enhanced, dose-dependent antibody and T-cell responses to WHsAg compared to those of the conventional hypodermic needle injection of WHsAg-pDNA. Although subunit WHsAg protein vaccine elicited higher antibody titers than the DNA vaccine delivered with EP, T-cell response rates were comparable. However, in WHsAg-stimulated mononuclear cell cultures, the mRNA expression of CD4 and CD8 leukocyte surface markers and Th1 cytokines was more frequent and was skewed following DNA vaccination compared to that of protein immunization. Thus, the EP-based vaccination of normal woodchucks with pDNA-WHsAg induced a skew in the Th1/Th2 balance toward Th1 immune responses, which may be considered more appropriate for approaches involving therapeutic vaccines to treat chronic HBV infection.  相似文献   

8.
Hepatitis D virus (HDV) superinfection of hepatitis B virus (HBV) carriers causes severe liver disease and a high rate of chronicity. Therefore, a vaccine protecting HBV carriers from HDV superinfection is needed. To protect from HDV infection an induction of virus-specific T cells is required, as antibodies to the two proteins of HDV, p24 and p27, do not neutralize the HBV-derived envelope of HDV. In mice, HDV-specific CD8+ and CD4+ T cell responses were induced by a DNA vaccine expressing HDV p27. In subsequent experiments, seven naive woodchucks were immunized with a DNA prime and adenoviral boost regimen prior to simultaneous woodchuck hepatitis virus (WHV) and HDV infection. Five of seven HDV-immunized woodchucks were protected against HDV infection, while acute self-limiting WHV infection occurred as expected. The two animals with the breakthrough had a shorter HDV viremia than the unvaccinated controls. The DNA prime and adenoviral vector boost vaccination protected woodchucks against HDV infection in the setting of simultaneous infection with WHV and HDV. In future experiments, the efficacy of this protocol to protect from HDV infection in the setting of HDV superinfection will need to be proven.  相似文献   

9.
Lu M  Isogawa M  Xu Y  Hilken G 《Journal of virology》2005,79(10):6368-6376
A number of options are available to modify and improve DNA vaccines. An interesting approach to improve DNA vaccines is to fuse bioactive domains, like cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), to an antigen. Such fusion antigens are expressed in vivo and directed to immune cells by the specific bioactive domain and therefore possess great potential to induce and modulate antigen-specific immune responses. In the present study, we tested this new approach for immunomodulation against hepadnavirus infection in the woodchuck model. Plasmids expressing the nucleocapsid protein (WHcAg) and e antigen (WHeAg) of woodchuck hepatitis virus (WHV) alone or in fusion to the extracellular domain of woodchuck CTLA-4 and CD28 were constructed. Immunizations of mice with plasmids expressing WHcAg or WHeAg led to a specific immunoglobulin G2a (IgG2a)-dominant antibody response. In contrast, fusions of WHcAg to CTLA-4 and CD28 induced a specific antibody response with comparable levels of IgG1 and IgG2a. Furthermore, the specific IgG1 response to WHcAg/WHeAg developed immediately after a single immunization with the CTLA-4-WHcAg fusion. Woodchucks were immunized with plasmids expressing WHeAg or the CTLA-4-WHcAg fusion and subsequently challenged with WHV. CTLA-4-WHcAg showed an improved efficacy in induction of protective immune responses to WHV. In particular, the anti-WHsAg antibody response developed earlier after challenge in woodchucks that received immunizations with CTLA-4-WHcAg, consistent with the hypothesis that anti-WHs response is dependent on a Th cell response to WHcAg. In conclusion, the use of fusion genes represents a generally applicable strategy to improve DNA vaccination.  相似文献   

10.
The infection of woodchucks with woodchuck hepatitis virus (WHV) provides an experimental model to study early immune responses during hepadnavirus infection that cannot be tested in patients. The T-cell response of experimentally WHV-infected woodchucks to WHsAg, rWHcAg, and WHcAg peptides was monitored by observing 5-bromo-2′-deoxyuridine and [2-3H]adenine incorporation. The first T-cell responses were directed against WHsAg 3 weeks after infection; these were followed by responses to rWHcAg including the immunodominant T-cell epitope of WHcAg (amino acids 97 to 110). Maximal proliferative responses were detected when the animals seroconvered to anti-WHs and anti-WHc (week 6). A decrease in the T-cell response to viral antigens coincided with clearance of viral DNA. Polyclonal rWHcAg-specific T-cell lines were established 6, 12, 18, and 24 weeks postinfection, and their responses to WHcAg peptides were assessed. Five to seven peptides including the immunodominant epitope were recognized throughout the observation period (6 months). At 12 months after infection, T-cell responses to antigens and peptides were not detected. Reactivation of T-cell responses to viral antigens and peptides occurred within 7 days after challenge of animals with WHV. These results demonstrate that a fast and vigorous T-cell response to WHsAg, rWHcAg, and amino acids 97 to 110 of the WHcAg occurs within 3 weeks after WHV infection. The peak of this response was associated with viral clearance and may be crucial for recovery from infection. One year after infection, no proliferation of T cells in response to antigens was observed; however, the WHV-specific T-cell response was reactivated after challenge of woodchucks with WHV and may be responsible for protection against WHV reinfection.  相似文献   

11.
The woodchuck model is an informative model for studies on hepadnaviral infection. In this study, woodchuck hepatitis virus (WHV) transgenic (Tg) mouse models based on C57BL/6 mice were established to study the pathogenesis associated with hepadnaviral infection. Two lineages of WHV Tg mice, harboring the WHV wild-type genome (lineage 1217) and a mutated WHV genome lacking surface antigen (lineage 1281), were generated. WHV replication intermediates were detected by Southern blotting. DNA vaccines against WHV proteins were applied by intramuscular injection. WHV-specific immune responses were analyzed by flow cytometry and enzyme-linked immunosorbent assays (ELISAs). The presence of WHV transgenes resulted in liver-specific but sex- and age-dependent WHV replication in Tg mice. Pathological changes in the liver, including hepatocellular dysplasia, were observed in aged Tg mice, suggesting that the presence of WHV transgenes may lead to liver diseases. Interestingly, Tg mice of lineage 1281 spontaneously developed T- and B-cell responses to WHV core protein (WHcAg). DNA vaccination induced specific immune responses to WHV proteins in WHV Tg mice, indicating a tolerance break. The magnitude of the induced WHcAg-specific immune responses was dependent on the effectiveness of different DNA vaccines and was associated with a decrease in WHV loads in mice. In conclusion, sex- and age-dependent viral replication, development of autoimmune responses to viral antigens, pathological changes in the liver in WHV Tg mice, and the possibility of breaking immune tolerance to WHV transgenes will allow future studies on pathogenesis related to hepadnaviral infection and therapeutic vaccines.  相似文献   

12.
13.
Abstract The peripheral blood mononuclear cells (PBMC) of woodchucks experimentally infected by woodchuck hepatitis virus (WHV) were examined simultaneously for the presence of membrane associated WHV antigens by cytofluorometry, and for WHV DNA and RNA sequences by the polymerase chain reaction (PCR). Four woodchucks were inoculated: two with a well-defined infectious inoculum and two with an inoculum obtained from an animal at the late incubation phase, which was positive for WHV DNA by PCR but still devoid of WHV markers. Infection was demonstrated in all four inoculated woodchucks by the appearance at different times of WHV DNA and WHV antigens in both leucocytes and serum. WHV DNA was first detected by PCR either in the serum (two cases) or in leucocytes (two cases). The mean percentage of cells positive for membrane associated WHsAg or WHcAg detected by cytofluorometry were 37%±25 and 17%±15 respectively. After 8 weeks, all inoculated animals were WHsAg positive in serum. These data suggest that PBMC are involved in the early events of hepadnavirus infection. They also show that sera which are positive by PCR for WHV DNA may transmit viral infection even while still seronegative for WHV markers and for WHV DNA by dot blot.  相似文献   

14.
Woodchucks infected with woodchuck hepatitis virus (WHV) are an excellent model for studying acute, self-limited and chronic hepadnaviral infections. Defects in the immunological response leading to chronicity are still unknown. Specific T-helper cell responses to WHV core and surface antigens (WHcAg and WHsAg, respectively) are associated with acute resolving infection; however, they are undetectable in chronic infection. Up to now, cytotoxic T-lymphocyte (CTL) responses could not be determined in the woodchuck. In the present study, we detected virus-specific CTL responses by a CD107a degranulation assay. The splenocytes of woodchucks in the postacute phase of WHV infection (18 months postinfection) were isolated and stimulated with overlapping peptides covering the whole WHcAg. After 6 days, the cells were restimulated and stained for CD3 and CD107a. One peptide (c96-110) turned out to be accountable for T-cell expansion and CD107a staining. Later, we applied the optimized degranulation assay to study the kinetics of the T-cell response in acute WHV infection. We found a vigorous T-cell response against peptide c96-110 with peripheral blood cells beginning at the peak of viral load (week 5) and lasting up to 15 weeks postinfection. In contrast, there was no T-cell response against peptide c96-110 detectable in chronically WHV-infected animals. Thus, with this newly established flow cytometric degranulation assay, we detected for the first time virus-specific CTLs and determined one immunodominant epitope of WHcAg in the woodchuck.  相似文献   

15.
Woodchuck hepatitis virus (WHV) mutants with core internal deletions (CID) occur naturally in chronically WHV-infected woodchucks, as do hepatitis B virus mutants in humans. We studied the replication of WHV deletion mutants in primary woodchuck hepatocyte cultures and in vivo after transmission to naive woodchucks. By screening 14 wild-caught, chronically WHV-infected woodchucks, two woodchucks, WH69 and WH70, were found to harbor WHV CID mutants. Consistent with previous results, WHV CID mutants from both animals had deletions of variable lengths (90 to 135 bp) within the middle of the WHV core gene. In woodchuck WH69, WHV CID mutants represented a predominant fraction of the viral population in sera, normal liver tissues, and to a lesser extent, in liver tumor tissues. In primary hepatocytes of WH69, the replication of wild-type WHV and CID mutants was maintained at least for 7 days. Although WHV CID mutants were predominant in fractions of cellular WHV replicative intermediates, mutant covalently closed circular DNAs (cccDNAs) appeared to be a small part of cccDNA-enriched fractions. Analysis of cccDNA-enriched fractions from liver tissues of other woodchucks confirmed that mutant cccDNA represents only a small fraction of the total cccDNA pool. Four naive woodchucks were inoculated with sera from woodchuck WH69 or WH70 containing WHV CID mutants. All four woodchucks developed viremia after 3 to 4 weeks postinoculation (p.i.). They developed anti-WHV core antigen (WHcAg) antibody, lymphoproliferative response to WHcAg, and anti-WHV surface antigen. Only wild-type WHV, but no CID mutant, was found in sera from these woodchucks. The WHV CID mutant was also not identified in liver tissue from one woodchuck sacrificed in week 7 p.i. Three remaining woodchucks cleared WHV. Thus, the presence of WHV CID mutants in the inocula did not significantly change the course of acute self-limiting WHV infection. Our results indicate that the replication of WHV CID mutants might require some specific selective conditions. Further investigations on WHV CID mutants will allow us to have more insight into hepadnavirus replication.  相似文献   

16.
探索一种简便、有效的乙型肝炎病毒DNA疫苗免疫方法。将编码绿色荧光蛋白的真核表达质粒pEGFPN1转化到减毒鼠伤寒沙门菌SL7207,灌胃饲服BALB/c小鼠,流式细胞术检测出小鼠脾细胞内表达的绿色荧光蛋白;构建编码HBV包膜大蛋白的DNA疫苗pCIS1S2S,分别以SL7207为载体的口服途径或直接肌肉注射途径免疫BALB/c小鼠,检测小鼠的血清抗体、T细胞增殖和细胞毒性T淋巴细胞反应,结果表明两种免疫途径均能在小鼠体内诱生细胞和体液免疫应答,但口服途径诱导免疫应答的强度明显强于肌肉注射途径。口服携带HBV DNA疫苗的减毒伤寒沙门菌可能代表一种简便、有效的治疗乙型肝炎的新方法。   相似文献   

17.
The peripheral blood lymphocytes (PBL) of five hepatitis B virus (HBV)-infected chimpanzees and 17 woodchuck hepatitis virus (WHV)-infected woodchucks were examined for the presence of viral DNA and RNA. HBV DNA was detected in the PBL of three of three chronically infected chimpanzees but in neither of two animals with acute HBV infection. WHV DNA was found in the PBL of 11 of 13 chronically infected woodchucks and in the PBL and bone marrow of 1 of 4 woodchucks with antibody to WHV surface antigen. Viral DNA in the PBL and bone marrow was episomal, primarily existing as multimers with some monomeric forms. Integrated HBV DNA was detected in the PBL of one chronically infected chimpanzee, but only for a brief period. Viral RNA was also detected in the PBL, although less frequently than was DNA. HBV RNA in chimpanzee PBL existed as 3.8- and 7.5-kilobase species, while 2.3- and 3.8-kilobase WHV RNA was found in woodchuck PBL. Subfractionation of PBL isolated from the chronically infected chimpanzees demonstrated that HBV DNA and RNA were located in B and T cells. No HBV DNA was detected in the macrophages. These results, along with the recent reports of HBV nucleic acids in the PBL of human patients, suggest that infection of PBL may be a general phenomenon associated with the pathology of hepadnaviruses.  相似文献   

18.
DNA vaccines encoding a viral protein have been shown to induce antiviral immune responses and provide protection against subsequent viral challenge. In this study, we show that the efficacy of a DNA vaccine can be greatly improved by simultaneous expression of interleukin-2 (IL-2). Plasmid vectors encoding the major (S) or middle (pre-S2 plus S) envelope proteins of hepatitis B virus (HBV) were constructed and compared for their potential to induce hepatitis B surface antigen (HBsAg)-specific immune responses with a vector encoding the middle envelope and IL-2 fusion protein or with a bicistronic vector separately encoding the middle envelope protein and IL-2. Following transfection of cells in culture with these HBV plasmid vectors, we found that the encoded major protein was secreted while the middle protein and the fusion protein were retained on the cell membrane. Despite differences in localization of the encoded antigens, plasmids encoding the major or middle proteins gave similar antibody and T-cell proliferative responses in the vaccinated animals. The use of plasmids coexpressing IL-2 and the envelope protein in the fusion or nonfusion context resulted in enhanced humoral and cellular immune responses. In addition, the vaccine efficacy in terms of dosage used in immunization was increased at least 100-fold by coexpression of IL-2. We also found that DNA vaccines coexpressing IL-2 help overcome major histocompatibility complex-linked nonresponsiveness to HBsAg vaccination. The immune responses elicited by HBV DNA vaccines were also modulated by coexpression of IL-2. When restimulated with antigen in vitro, splenocytes from mice that received plasmids coexpressing IL-2 and the envelope protein produced much stronger T helper 1 (Th1)-like responses than did those from mice that had been given injections of plasmids encoding the envelope protein alone. Coexpression of IL-2 also increased the Th2-like responses, although the increment was much less significant.  相似文献   

19.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1( )-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.  相似文献   

20.
In vitro proliferation of peripheral blood mononuclear cells was used to measure virus-specific cell-mediated immunity (vCMI) following neonatal woodchuck hepatitis virus (WHV) infection. Fifteen neonates were inoculated with the W8 strain of WHV. In 11, infection was resolved, and 4 became chronic carriers. Nineteen neonates were inoculated with the W7 strain and all became chronic carriers. Seven age-matched uninfected woodchucks served as controls. Virologic and vCMI profiles among the W8 and W7 infections were compared and related to the outcome of infection. Resolving woodchucks had robust, acute-phase vCMI to WHV antigens (core, surface, and x) and to several nonoverlapping core peptides. The acute-phase vCMI was associated temporally with the clearance of viral DNA and of surface antigen from serum at 14 to 22 weeks postinfection. In contrast, in approximately half of the W8 and W7 infections that progressed to chronicity, no significant acute-phase vCMI was detected. In the remaining carriers, acute-phase vCMI was observed, but it was less frequent and incomplete compared to that of resolved woodchucks. Serum viral load developed less rapidly in those carriers that had evidence of acute-phase vCMI, but it was still increased compared to that of resolving woodchucks. Thus, vigorous and multispecific acute-phase vCMI was associated with resolution of neonatal WHV infection. Absent or incomplete acute-phase vCMI was associated with the progression to chronic infection. By analogy, these results suggest that the onset of chronic hepatitis B virus (HBV) infection in humans may be associated with deficiencies in the primary T-cell response to acute HBV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号