首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertension in rats with chronic placental ischemia (reduced uterine perfusion pressure, RUPP) is associated with elevated inflammatory cytokines, agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA) and CD4(+) T cells; all of which are elevated in preclamptic women. Additionally, we have shown that adoptive transfer of RUPP CD4(+) T cells increases blood pressure, inflammatory cytokines, and sFlt-1. The objective of this study was to determine the long-term effects of RUPP CD4(+) T cells on AT1-AA, renal and systemic hemodynamics in pregnant rats. To answer this question CD4(+) T splenocytes were magnetically isolated on day 19 of gestation from control RUPP and normal pregnant (NP) rats and injected into a new group of NP rats at day 13 of gestation. On day 19 of gestation mean arterial pressure (MAP) and renal function (glomerular filtration rates, GFR) were analyzed and serum collected for AT1-AA analysis. To determine a role for AT1-AA to mediate RUPP CD4(+) T cell-induced blood pressure increases, MAP was analyzed in a second group of rats treated with AT1 receptor blockade losartan (10 mg·kg(-1)·day(-1)) and in a third group of rats treated with rituximab, a B cell-depleting agent (250 mg/kg) we have shown previously to decrease AT1-AA production in RUPP rats. MAP increased from 101 ± 2 mmHg NP to 126 ± 2 mmHg in RUPP rats (P < 0.001) and to 123 ± 1 mmHg in NP rats injected with RUPP CD4(+) T cells (NP+RUPP CD4(+)T cells) (P < 0.001). Furthermore, GFR decreased from 2.2 ml/min (n = 7) in NP rats to 1.0 ml/min (n = 5) NP+RUPP CD4(+)T cell. Circulating AT1-AA increased from 0.22 ± 0.1 units in NP rats to 13 ± 0.7 (P < 0.001) units in NP+RUPP CD4(+)T cell-treated rats but decreased to 8.34 ± 1 beats/min in NP+RUPP CD4(+) T cells chronically treated with rituximab. Hypertension in NP+RUPP CD4(+)T cell group was attenuated by losartan (102 ± 4 mmHg) and with B cell depletion (101 ± 5 mmHg). Therefore, we conclude that one mechanism of hypertension in response to CD4(+) T lymphocytes activated during placental ischemia is via AT1 receptor activation, potentially via AT1-AA during pregnancy.  相似文献   

2.
We have shown that adoptive transfer of CD4(+) T cells from placental ischemia (reduction in uteroplacental perfusion, RUPP) rats causes hypertension and elevated inflammatory cytokines during pregnancy. In this study we tested the hypothesis that adoptive transfer of RUPP CD4(+) T cells was associated with endothelin-1 activation as a mechanism to increase blood pressure during pregnancy. CD4(+) T cells from RUPP or normal pregnant (NP) rats were adoptively transferred into NP rats on gestational day 13. Mean arterial pressure (MAP) was analyzed on gestational day 19, and tissues were collected for endothelin-1 analysis. MAP increased in placental ischemic RUPP rats versus NP rats (124.1 ± 3 vs. 96.2 ± 3 mmHg; P = 0.0001) and increased in NP recipients of RUPP CD4(+) T cells (117.8 ± 2 mmHg; P = 0.001 compared with NP). Adoptive transfer of RUPP CD4(+) T cells increased placental preproendothelin-1 mRNA 2.1-fold compared with NP CD4(+) T cell rats and 1.7-fold compared with NP. Endothelin-1 secretion from endothelial cells exposed to NP rat serum was 52.2 ± 1.9 pg·mg(-1)·ml(-1), 77.5 ± 4.3 pg·mg(-1)·ml(-1) with RUPP rat serum (P = 0.0003); 47.2 ± .16 pg·mg(-1)·ml(-1) with NP+NP CD4(+) T cell serum, and 62.2 ± 2.1 pg·mg(-1)·ml(-1) with NP+RUPP CD4(+) T cell serum (P = 0.002). To test the role of endothelin-1 in RUPP CD4(+) T cell-induced hypertension, pregnant rats were treated with an endothelin A (ET(A)) receptor antagonist (ABT-627, 5 mg/kg) via drinking water. MAP was 92 ± 2 mmHg in NP+ET(A) blockade and 108 ± 3 mmHg in RUPP+ET(A) blockade; 95 ± 5 mmHg in NP+NP CD4(+) T cells+ET(A) blockade and 102 ± 2 mmHg in NP+RUPP CD4(+) T cells+ET(A) blockade. These data indicate the importance of endothelin-1 activation to cause hypertension via chronic exposure to activated CD4(+) T cells in response to placental ischemia.  相似文献   

3.
Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ?17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.  相似文献   

4.
Hyperthyroidism in rats is associated with increased oxidative stress. These animals also show abnormal renal hemodynamics and an attenuated pressure-diuresis-natriuresis (PDN) response. We analyzed the role of oxidative stress as a mediator of these alterations by examining acute effects of tempol, a superoxide dismutase mimetic. The effects of increasing bolus doses of tempol (25-150 micromol/kg) on mean arterial pressure (MAP), renal vascular resistance (RVR), and cortical (CBF) and medullary (MBF) blood flow were studied in control and thyroxine (T4)-treated rats. In another experiment, tempol was infused at 150 micromol.kg(-1).h(-1) to analyze its effects on the glomerular filtration rate (GFR) and on PDN response in these animals. Tempol dose dependently decreased MAP and RVR and increased CBF and MBF in control and T4-treated rats, but the T4 group showed a greater responsiveness to tempol in all of these variables. The highest dose of tempol decreased RVR by 13.5 +/- 2.1 and 5.5 +/- 1.2 mmHg.ml(-1).min(-1) in hyperthyroid (P < 0.01) and control rats, respectively. GFR was not changed by tempol in controls but was significantly increased in the hyperthyroid group. Tempol did not change the absolute or fractional PDN responses of controls but significantly improved those of hyperthyroid rats, although without attaining normal values. Tempol increased the slopes of the relationship between renal perfusion pressure and natriuresis (T4+tempol: 0.17 +/- 0.05; T4: 0.09 +/- 0.03 microeq.min(-1).g(-1).mmHg(-1); P < 0.05) and reduced 8-isoprostane excretion in hyperthyroid rats. These results show that antioxidant treatment with tempol improves renal hemodynamic variables and PDN response in hyperthyroid rats, indicating the participation of an increased oxidative stress in these mechanisms.  相似文献   

5.
In decerebrate rats, we reported previously that the exercise pressor reflex arising from a limb whose femoral artery was occluded for 72 h before the experiment was significantly higher than the exercise pressor reflex arising from a contralateral freely perfused limb. These findings prompted us to examine whether reactive oxygen species contributed to the augmented pressor reflex in rats with femoral artery occlusion. We found that the pressor reflex arising from the limb whose femoral artery was occluded for 72 h before the experiment (31 ± 5 mmHg) was attenuated by tempol (10 mg), a superoxide dismutase (SOD) mimetic (18 ± 5 mmHg, n = 9, P < 0.05), that was injected into the arterial supply of the hindlimb. In contrast, the pressor reflex arising from a freely perfused hindlimb (20 ± 3 mmHg) was not attenuated by tempol (17 ± 4 mmHg, n = 10, P = 0.49). Nevertheless, we found no difference in the increase in 8-isoprostaglandin F(2α) levels, an index of reactive oxygen species, in response to contraction between freely perfused (3.76 ± 0.82 pg/ml, n = 19) and 72-h occluded (3.51 ± 0.92 pg/ml, n = 22, P = 0.90) hindlimbs. Moreover, tempol did not reduce the 8-isoprostaglandin F(2α) levels during contraction in either group (P > 0.30). A second SOD mimetic, tiron (200 mg/kg), had no effect on the exercise pressor reflex in either the rats with freely perfused hindlimbs or in those with occluded femoral arteries. These findings suggest that tempol attenuated the exercise pressor reflex in the femoral artery-occluded hindlimb by a mechanism that was independent of its ability to scavenge reactive oxygen species.  相似文献   

6.
Hypercholesterolemia (HC) is characterized by increased circulating 8-epi-prostaglandin-F(2alpha) (isoprostane), a vasoconstrictor, marker, and mediator of increased oxidative stress, whose vascular effects might be augmented in HC. Anesthetized pigs were studied in vivo with electron beam computed tomography after a 12-wk normal (n = 8) or HC (n = 8) diet. Mean arterial pressure (MAP), single-kidney perfusion, and glomerular filtration rate (GFR) were quantified before and during unilateral intrarenal infusions of U46619 (10 ng x kg(-1) x min(-1)) or isoprostane (1 microg x kg(-1) x min(-1)). Basal renal perfusion and function were similar, and isoprostane infusion elevated its systemic levels similarly in normal and HC (333 +/- 89 vs. 366 +/- 48 pg/ml, respectively, P < 0.01 vs. baseline). Both drugs markedly and comparably decreased cortical perfusion and GFR in both groups, whereas medullary perfusion decreased significantly only in HC. Moreover, MAP increased significantly only in HC (+9 +/- 3 and +11 +/- 3 mmHg, respectively, P相似文献   

7.
The complex role of the renin-angiotensin-system (RAS) in arterial pressure regulation has been well documented. Recently, we demonstrated that chronic low-dose angiotensin II (ANG II) infusion decreases arterial pressure in female rats via an AT(2)R-mediated mechanism. Estrogen can differentially regulate components of the RAS and is known to influence arterial pressure regulation. We hypothesized that AT(2)R-mediated depressor effects evident in females were estrogen dependent and thus would be abolished by ovariectomy and restored by estrogen replacement. Female Sprague-Dawley rats underwent ovariectomy or sham surgery and were treated with 17β-estradiol or placebo. Mean arterial pressure (MAP) was measured via telemetry in response to a 2-wk infusion of ANG II (50 ng·kg(-1)·min(-1) sc) or saline. MAP significantly decreased in females treated with ANG II (-10 ± 2 mmHg), a response that was abolished by ovariectomy (+4 ± 2 mmHg) and restored with estrogen replacement (-6 ± 2 mmHg). Cardiac and renal gene expression of components of the RAS was differentially regulated by estrogen, such that overall, estrogen shifted the balance of the RAS toward the vasodilatory axis. In conclusion, estrogen-dependent mechanisms offset the vasopressor actions of ANG II by enhancing RAS vasodilator pathways in females. This highlights the potential for these vasodilator pathways as therapeutic targets, particularly in women.  相似文献   

8.
Preeclampsia (PE) is associated with increased total peripheral resistance (TPR), reduced cardiac output (CO), and diminished uterine and placental blood flow. We have developed an animal model that employs chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats to generate a "preeclamptic-like" state during late gestation that is characterized by hypertension, proteinuria, and endothelial dysfunction. Although this animal model has many characteristics of human PE, the systemic hemodynamic and regional changes in blood flow that occur in response to chronic RUPP remains unknown. Therefore, we hypothesized that RUPP would decrease uteroplacental blood flow and CO, and increase TPR. Mean arterial pressure (MAP), CO, cardiac index (CI), TPR, and regional blood flow to various tissues were measured using radiolabeled microspheres in the following two groups of conscious rats: normal pregnant rats (NP; n = 8) and RUPP rats (n = 8). MAP was increased (132 +/- 4 vs. 99 +/- 3 mmHg) in the RUPP rats compared with the NP dams. The hypertension in RUPP rats was associated with increased TPR (2.15 +/- 0.02 vs. 0.98 +/- 0.08 mmHg x ml(-1) x min(-1)) and decreased CI (246 +/- 20 vs. 348 +/- 19 ml x min(-1) x kg(-1), P < 0.002) when contrasted with NP dams. Furthermore, uterine (0.16 +/- 0.03 vs. 0.38 +/- 0.09 ml x min(-1) x g tissue(-1)) and placental blood flow (0.30 +/- 0.08 vs. 0.70 +/- 0.10 ml x min(-1) x g tissue(-1)) were decreased in RUPP compared with the NP dams. These data demonstrate that the RUPP model of pregnancy-induced hypertension has systemic hemodynamic and regional blood flow alterations that are strikingly similar to those observed in women with PE.  相似文献   

9.
The purpose of this echocardiography study was to measure peak coronary blood flow velocity (CBV(peak)) and left ventricular function (via tissue Doppler imaging) during separate and combined bouts of cold air inhalation (-14 ± 3°C) and isometric handgrip (30% maximum voluntary contraction). Thirteen young adults and thirteen older adults volunteered to participate in this study and underwent echocardiographic examination in the left lateral position. Cold air inhalation was 5 min in duration, and isometric handgrip (grip protocol) was 2 min in duration; a combined stimulus (cold + grip protocol) and a cold pressor test (hand in 1°C water) were also performed. Heart rate, blood pressure, O(2) saturation, and inspired air temperature were monitored on a beat-by-beat basis. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, and CBV(peak) was used as an index of myocardial O(2) supply. The RPP response to the grip protocol was significantly blunted in older subjects (Δ1,964 ± 396 beats·min(-1)·mmHg) compared with young subjects (Δ3,898 ± 452 beats·min(-1)·mmHg), and the change in CBV(peak) was also blunted (Δ6.3 ± 1.2 vs. 11.2 ± 2.0 cm/s). Paired t-tests showed that older subjects had a greater change in the RPP during the cold + grip protocol [Δ2,697 ± 391 beats·min(-1)·mmHg compared with the grip protocol alone (Δ2,115 ± 375 beats·min(-1)·mmHg)]. An accentuated RPP response to the cold + grip protocol (compared with the grip protocol alone) without a concomitant increase in CBV(peak) may suggest a dissociation between the O(2) supply and demand in the coronary circulation. In conclusion, older adults have blunted coronary blood flow responses to isometric exercise.  相似文献   

10.
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.  相似文献   

11.
During baroreceptor unloading, sympathoexcitation is attenuated in near-term pregnant compared with nonpregnant rats. Alterations in balance among different excitatory and inhibitory inputs within central autonomic pathways likely contribute to changes in regulation of sympathetic outflow in pregnancy. Both baroreflex-dependent and baroreflex-independent GABAergic inputs inhibit sympathoexcitatory neurons within rostral ventrolateral medulla (RVLM). The present experiments tested the hypothesis that influence of baroreflex-independent GABAergic inhibition of RVLM is greater in pregnant compared with nonpregnant rats. Afferent baroreceptor inputs were eliminated by bilateral sinoaortic denervation in inactin-anesthetized rats. In pregnant compared with nonpregnant rats, baseline mean arterial pressure (MAP) was lower (pregnant = 75 +/- 6 mmHg, nonpregnant = 115 +/- 7 mmHg) and heart rate was higher (pregnant = 381 +/- 10 beats/min, nonpregnant = 308 +/- 10 beats/min). Pressor and sympathoexcitatory [renal sympathetic nerve activity, (RSNA)] responses due to bilateral GABA(A) receptor blockade (bicuculline, 4 mM, 100 nl) of the RVLM were greater in pregnant rats (delta MAP: pregnant = 101 +/- 4 mmHg, nonpregnant = 80 +/- 6 mmHg; delta RSNA: pregnant = 182 +/- 23% control, nonpregnant = 133 +/- 10% control). Unexpected transient sympathoexcitatory effects of angiotensin AT(1) receptor blockade in the RVLM were greater in pregnant rats. Although excitatory responses to bicuculline were attenuated by prior RVLM AT1 receptor blockade in both groups, pressor responses to disinhibition of the RVLM remained augmented in pregnant rats. Increased influence of baroreflex-independent GABAergic inhibition in RVLM could contribute to suppressed sympathoexcitation during withdrawal of arterial baroreceptor input in pregnant animals.  相似文献   

12.
The effects of neonatal sympathectomy of donors or recipients on posttransplantation arterial pressure were investigated in spontaneously hypertensive rats (SHR) by renal transplantation experiments. Conscious mean arterial pressure (MAP) and renal vascular resistance were 136 +/- 1 mmHg and 15.5 +/- 1.2 mmHg x ml(-1) x min x g in sympathectomized SHR (n = 8) vs. 158 +/- 4 mmHg (P < 0.001) and 20.8 +/- 1.1 mmHg x ml(-1) x min x g (P < 0.05) in controls (n = 10). Seven weeks after transplantation of a kidney from neonatally sympathectomized SHR donors, MAP in SHR recipients (n = 10) was 20 mmHg lower than in controls transplanted with a kidney from hydralazine-treated SHR (n = 10) (P < 0.05) associated with reduced sodium sensitivity of MAP. Neonatal sympathectomy also lowered MAP in F1-hybrids (F1H; SHR x Wistar-Kyoto rats). Within 6 wk after transplantation, renal grafts from untreated SHR increased MAP by 20 mmHg in sympathectomized F1H (n = 10) and by 35 mmHg in sham-treated F1H (n = 8) (P < 0.05). Neonatal sympathectomy induces chronic changes in SHR kidney function leading to a MAP reduction even when extrarenal sympathetic tone is restored. Generalized reduction in sympathetic tone resets the kidney-fluid system to reduced MAP and blunts the extent of arterial pressure rise induced by an SHR kidney graft.  相似文献   

13.
Hyperinsulinemia and hyperleptinemia occur concurrently in obese subjects, and both have been suggested to mediate increased blood pressure associated with excess weight gain. The goal of this study was to determine whether chronic hyperleptinemia exacerbates the effects of insulin on arterial pressure and renal function. Group I and II rats were infused with insulin (1.5 mU. kg(-1). min(-1)) for 21 days while maintaining euglycemia. After 7 days of insulin infusion, group II rats received leptin (1.0 microg. kg(-1). min(-1)) for 7 days, concomitant with insulin. Insulin plus glucose infusion reduced food intake to 55 +/- 7% of control, while leptin + insulin lowered food intake further to 22 +/- 4% of the initial control. Insulin initially raised mean arterial pressure (MAP) by 12 +/- 1 mmHg; then MAP declined to 5-8 mmHg above control during continued hyperinsulinemia. Leptin + insulin infusion increased MAP by 7 +/- 2 mmHg above the level observed in rats infused with insulin alone. Insulin raised heart rate (HR) by 17 +/- 5 beats/min, whereas leptin + insulin increased HR by 34 +/- 5 beats/min. Thus leptin appears to increase the effects of insulin to suppress appetite and to raise arterial pressure and HR.  相似文献   

14.
Hypoxic vasodilation in skeletal muscle at rest is known to include β-adrenergic receptor-stimulated nitric oxide (NO) release. We previously reported that the augmented skeletal muscle vasodilation during mild hypoxic forearm exercise includes β-adrenergic mechanisms. However, it is unclear whether a β-adrenergic receptor-stimulated NO component exists during hypoxic exercise. We hypothesized that NO-mediated vasodilation becomes independent of β-adrenergic receptor activation with increased exercise intensity during hypoxic exercise. Ten subjects (7 men, 3 women; 23 ± 1 yr) breathed hypoxic gas to titrate arterial O(2) saturation to 80% while remaining normocapnic. Subjects performed two consecutive bouts of incremental rhythmic forearm exercise (10% and 20% of maximum) with local administration (via a brachial artery catheter) of propranolol (β-adrenergic receptor inhibition) alone and with the combination of propranolol and nitric oxide synthase inhibition [N(G)-monomethyl-l-arginine (l-NMMA)] under normoxic and hypoxic conditions. Forearm blood flow (FBF, ml/min; Doppler ultrasound) and blood pressure [mean arterial pressure (MAP), mmHg; brachial artery catheter] were assessed, and forearm vascular conductance (FVC, ml·min(-1)·100 mmHg(-1)) was calculated (FBF/MAP). During propranolol alone, the rise in FVC (Δ from normoxic baseline) due to hypoxic exercise was 217 ± 29 and 415 ± 41 ml·min(-1)·100 mmHg(-1) (10% and 20% of maximum, respectively). Combined propranolol-l-NMMA infusion during hypoxic exercise attenuated ΔFVC at 20% (352 ± 44 ml·min(-1)·100 mmHg(-1); P < 0.001) but not at 10% (202 ± 28 ml·min(-1)·100 mmHg(-1); P = 0.08) of maximum compared with propranolol alone. These data, when integrated with earlier findings, demonstrate that NO contributes to the compensatory vasodilation during mild and moderate hypoxic exercise; a β-adrenergic receptor-stimulated NO component exists during low-intensity hypoxic exercise. However, the source of the NO becomes less dependent on β-adrenergic mechanisms as exercise intensity increases.  相似文献   

15.
We tested the hypothesis that 1) prostaglandins (PGs) contribute to compensatory vasodilation in contracting human forearm subjected to acute hypoperfusion, and 2) the combined inhibition of PGs and nitric oxide would attenuate the compensatory vasodilation more than PG inhibition alone. In separate protocols, subjects performed forearm exercise (20% of maximum) during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included baseline, exercise before inflation, exercise with inflation, and exercise after deflation. Forearm blood flow (FBF; ultrasound) and local (brachial artery) and systemic arterial pressure [mean arterial pressure (MAP); Finometer] were measured. In protocol 1 (n = 8), exercise was repeated during cyclooxygenase (COX) inhibition (Ketorolac) alone and during Ketorolac-NOS inhibition [N(G)-monomethyl-l-arginine (l-NMMA)]. In protocol 2 (n = 8), exercise was repeated during l-NMMA alone and during l-NMMA-Ketorolac. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from FBF (ml/min) and local MAP (mmHg). The percent recovery in FVC during inflation was calculated as (steady-state inflation + exercise value - nadir)/[steady-state exercise (control) value - nadir] × 100. In protocol 1, COX inhibition alone did not reduce the %FVC recovery compared with the control (no drug) trial (92 ± 11 vs. 100 ± 10%, P = 0.83). However, combined COX-nitric oxide synthase (NOS) inhibition caused a substantial reduction in %FVC recovery (54 ± 8%, P < 0.05 vs. Ketorolac alone). In protocol 2, the percent recovery in FVC was attenuated with NOS inhibition alone (69 ± 9 vs. 107 ± 10%, P < 0.01) but not attenuated further during combined NOS-COX inhibition (62 ± 10%, P = 0.74 vs. l-NMMA alone). Our data indicate that PGs are not obligatory to the compensatory dilation observed during forearm exercise with hypoperfusion.  相似文献   

16.
Increasing body core temperature reflexly decreases renal blood flow (RBF), and the hypothalamic paraventricular nucleus (PVN) plays an essential role in this response. ANG II in the brain is involved in the cardiovascular responses to hyperthermia, and ANG II receptors are highly concentrated in the PVN. The present study investigated whether ANG II in the PVN contributes to the cardiovascular responses elicited by hyperthermia. Rats anesthetized with urethane (1-1.4 g/kg iv) were microinjected bilaterally into the PVN (100 nl/side) with saline (n = 5) or losartan (1 nmol/100 nl) (n = 7), an AT1 receptor antagonist. Body core temperature was then elevated from 37°C to 41°C and blood pressure (BP), heart rate (HR), RBF, and renal vascular conductance (RVC) were monitored. In separate groups losartan (n = 4) or saline (n = 4) was microinjected into the PVN, but body core temperature was not elevated. Increasing body core temperature in control rats elicited significant decreases in RBF (-48 ± 5% from a resting level of 14.3 ± 1.4 ml/min) and MVC (-40 ± 4% from a resting level of 0.128 ± 0.013 ml/min·mmHg), and these effects were entirely prevented by pretreatment with losartan. In rats in which body core temperature was not altered, losartan microinjected into the PVN had no significant effects on these variables. The results suggest that endogenous ANG II acts on AT1 receptors in the PVN to mediate the reduction in RBF induced by hyperthermia.  相似文献   

17.
The neural interaction between the cardiopulmonary and arterial baroreflex may be critical for the regulation of blood pressure during orthostatic stress. However, studies have reported conflicting results: some indicate increases and others decreases in cardiac baroreflex sensitivity (i.e., gain) with cardiopulmonary unloading. Thus the effect of orthostatic stress-induced central hypovolemia on regulation of heart rate via the arterial baroreflex remains unclear. We sought to comprehensively assess baroreflex function during orthostatic stress by identifying and comparing open- and closed-loop dynamic cardiac baroreflex gains at supine rest and during 60° head-up tilt (HUT) in 10 healthy men. Closed-loop dynamic "spontaneous" cardiac baroreflex sensitivities were calculated by the sequence technique and transfer function and compared with two open-loop carotid-cardiac baroreflex measures using the neck chamber system: 1) a binary white-noise method and 2) a rapid-pulse neck pressure-neck suction technique. The gain from the sequence technique was decreased from -1.19 ± 0.14 beats·min(-1)·mmHg(-1) at rest to -0.78 ± 0.10 beats·min(-1)·mmHg(-1) during HUT (P = 0.005). Similarly, closed-loop low-frequency baroreflex transfer function gain was reduced during HUT (P = 0.033). In contrast, open-loop low-frequency transfer function gain between estimated carotid sinus pressure and heart rate during white-noise stimulation was augmented during HUT (P = 0.01). This result was consistent with the maximal gain of the carotid-cardiac baroreflex stimulus-response curve (from 0.47 ± 0.15 beats·min(-1)·mmHg(-1) at rest to 0.60 ± 0.20 beats·min(-1)·mmHg(-1) at HUT, P = 0.037). These findings suggest that open-loop cardiac baroreflex gain was enhanced during HUT. Moreover, under closed-loop conditions, spontaneous baroreflex analyses without external stimulation may not represent open-loop cardiac baroreflex characteristics during orthostatic stress.  相似文献   

18.
There are important differences in autonomic function and cardiovascular responsiveness between African Americans (AA) and Caucasian Americans (CA). This study tested the hypothesis that carotid baroreflex (CBR) responsiveness is impaired in normotensive AA compared with normotensive CA at rest. CBR control of heart rate (HR) and mean arterial blood pressure (MAP) was assessed in 30 nonhypertensive male subjects (15 AA; 15 CA; age 18-33 yr) with 5-s periods of neck pressure (NP; simulated hypotension) and neck suction (NS; simulated hypertension) ranging from +45 to -80 Torr during rest. Carotid-cardiac stimulus-response curves revealed a significantly lower minimum HR response in the CA compared with AA (40.8 ± 2.4 vs. 49.8 ± 2.9 beats/min, respectively; P < 0.05). In addition, the magnitude of the mean HR response to all trials of NS (-20, -40, -60, and -80 Torr) was attenuated in the AA group (AA, -10.1 ± 1.7 vs. CA, -14.9 ± 2.2 beats/min; P < 0.05), while no significant differences were found in the magnitude of the mean HR response to NP (+15, +30, and +45 Torr) between racial groups. There were no significant differences in the carotid-vasomotor stimulus-response curves between racial groups. Also, while no racial differences were found in the magnitude of the mean MAP response to all trials of NS, the magnitude of the mean MAP response to all trials of NP was attenuated in the AA group (AA, 7.2 ± 1.3 vs. CA, 9.3 ± 1.1 mmHg; P < 0.05). Together, these findings support inherent differences in short-term blood pressure regulation between racial groups that exhibit different relative risk for the development of hypertension.  相似文献   

19.
Recent studies in smooth muscle-specific Na(+)/Ca(2+) exchanger-1 knockout (NCX1(sm-/-)) mice reveal reduced arterial pressure and impaired myogenic responses compared with heterozygous littermates. In this study, we determined renal function in male anesthetized NCX1(sm-/-) mice and NCX1 heterozygous (NCX1(+/-)) littermates before and during acute ANG II infusions. Systolic blood pressure in awake mice was lower in NCX1(sm-/-) mice compared with NCX1(+/-) mice (119 ± 4 vs. 131 ± 3 mmHg, P < 0.05). Acute ANG II infusions (5 ng·min(-1)·g(-1) body wt) increased mean arterial pressure in anesthetized NCX1(+/-) (109 ± 2 to 134 ± 3 mmHg, P < 0.001, n = 8) and NCX1(sm-/-) (101 ± 8 to 129 ± 8 mmHg, P < 0.01, n = 6) mice to a similar extent (Δ25 ± 1 vs. Δ28 ± 4 mmHg, P > 0.05). In response to ANG II infusions, PAH clearance (C(PAH)) decreased from 1.39 ± 0.27 to 0.98 ± 0.22 ml·min(-1)·g(-1) (P < 0.05) and glomerular filtration rate (GFR) was reduced from 0.50 ± 0.09 to 0.32 ± 0.06 ml·min(-1)·g(-1) (P < 0.05) in NCX1(+/-) mice. In contrast, the NCX1(sm-/-) did not exhibit significant reductions in either C(PAH) (1.16 ± 0.30 to 1.22 ± 0.34 ml·min(-1)·g(-1), P > 0.05) or GFR (0.48 ± 0.08 to 0.41 ± 0.05 ml·min(-1)·g(-1), P > 0.05) during acute ANG II infusions. Using flometry to measure renal blood flow continuously, NCX1(sm-/-) mice had significantly attenuated responses to ANG II infusions (-34.2 ± 3.9%, P < 0.05) compared with those in NCX1(+/-) mice (-48 ± 2%) or in wild-type mice (-69 ± 7%). These data indicate that renal vascular responses to ANG II are attenuated in NCX1(sm-/-) mice compared with NCX1(+/-) mice and that NCX1 contributes to the renal vasoconstriction response to acute ANG II infusions.  相似文献   

20.
We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号