首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Four mutants that show the delayed leaf senescence phenotype were isolated from Arabidopsis thaliana . Genetic analyses revealed that they are all monogenic recessive mutations and fall into three complementation groups, identifying three genetic loci controlling leaf senescence in Arabidopsis . Mutations in these loci cause delay in all senescence parameters examined, including chlorophyll content, photochemical efficiency of photosystem II, relative amount of the large subunit of Rubisco, and RNase and peroxidase activity. Delay of the senescence symptoms was observed during both age-dependent in planta senescence and dark-induced artificial senescence in all of the mutant plants. The results indicate that the three genes defined by the mutations are key genetic elements controlling functional leaf senescence and provide decisive genetic evidence that leaf senescence is a genetically programmed phenomenon controlled by several monogenic loci in Arabidopsis . The results further suggest that the three genes function at a common step of age-dependent and dark-induced senescence processes. It is further shown that one of the mutations is allelic to ein2-1 , an ethylene-insensitive mutation, confirming the role of ethylene signal transduction pathway in leaf senescence of Arabidopsis .  相似文献   

5.
6.
7.
Background and Aims Vitamin E helps to control the cellular redox state by reacting with singlet oxygen and preventing the propagation of lipid peroxidation in thylakoid membranes. Both plant ageing and phosphorus deficiency can trigger accumulation of reactive oxygen species, leading to damage to the photosynthetic apparatus. This study investigates how phosphorus availability and vitamin E interact in the control of plant longevity in the short-lived annual Arabidopsis thaliana.Methods The responses of tocopherol cyclase (VTE1)- and γ-tocopherol methyltransferase (VTE4)-null mutants to various levels of phosphorus availability was compared with that of wild-type plants. Longevity (time from germination to rosette death) and the time taken to pass through different developmental stages were determined, and measurements were taken of photosynthetic efficiency, pigment concentration, lipid peroxidation, vitamin E content and jasmonate content.Key Results The vte1 mutant showed accelerated senescence under control conditions, excess phosphorus and mild phosphorus deficiency, suggesting a delaying, protective effect of α-tocopherol during plant senescence. However, under severe phosphorus deficiency the lack of α-tocopherol paradoxically increased longevity in the vte1 mutant, while senescence was accelerated in wild-type plants. Reduced photoprotection in vitamin E-deficient mutants led to increased levels of defence chemicals (as indicated by jasmonate levels) under severe phosphorus starvation in the vte4 mutant and under excess phosphorus and mild phosphorus starvation in the vte1 mutant, indicating a trade-off between the capacity for photoprotection and the activation of chemical defences (jasmonate accumulation).Conclusions Vitamin E increases plant longevity under control conditions and mild phosphorus starvation, but accelerates senescence under severe phosphorus limitation. Complex interactions are revealed between phosphorus availability, vitamin E and the potential to synthesize jasmonates, suggesting a trade-off between photoprotection and the activation of chemical defences in the plants.  相似文献   

8.
9.
10.
Leaf senescence is a developmentally programmed event, but the initiation and progression of leaf senescence are affected by a range of plant hormones including abscisic acid (ABA), ethylene and methyl jasmonate (MeJA). To investigate plant hormone crosstalk during leaf senescence, hormone-induced senescence phenotypes were analyzed in three leaf senescence mutants [ore1 (oresara1), ore3 and ore9] showing delayed senescence phenotypes in age-dependent and dark-induced senescence. The ore mutants exhibited delayed leaf senescence phenotypes following treatment with ABA, ACC (aminocyclo-propane-1-carboxylic acid) or MeJA. After each hormone treatment, the photochemical efficiency of photosystem II and chlorophyll content were significantly higher in the ore mutant leaves than in the wild-type leaves. The expression of CAB2 and SEN4 in the wild-type was rapidly altered following each hormone treatment. However, the decrease in CAB2 expression and the induction of SEN4 expression in the mutants were less affected by ABA, ACC or MeJA treatment. It is suggested that ORE1, ORE3 and ORE9 are required for the proper progression of leaf senescence mediated by ABA, ethylene and MeJA. This implies that ORE1, ORE3 and ORE9 may be linked to the crosstalk among senescence pathways induced by ABA, ethylene and MeJA, as well as age and darkness.  相似文献   

11.
12.
13.
14.
15.
16.
Methyl jasmonate (MeJA) is an important signalling molecule that has been reported to be able to promote plant senescence. The cell death suppressor Bax inhibitor-1 (BI1) has been found to suppress stress factor-mediated cell death in yeast and Arabidopsis. However, the effect and the genetic mechanism of Arabidopsis thaliana BI1 (AtBI1) on leaf senescence remain unclear. It was found here that the AtBI1 mutant, atbi1-2 (a gene knock-out), showed accelerated progression of MeJA-induced leaf senescence, while the AtBI1 complementation lines displayed similar symptoms as the WT during the senescence process. In addition, over-expression of the AtBI1 gene delayed the onset of MeJA-induced leaf senescence. Further analyses showed that during the process of MeJA-induced senescence, the activity of MPK6, a mitogen-activated protein kinase (MAPK), increased in WT plants, whereas it was significantly suppressed in AtBI1-overexpressing plants. Under the MeJA treatment, cytosolic calcium ([Ca(2+)](cyt)) functioned upstream of MPK6 activation and the elevation of [Ca(2+)](cyt) was reduced in AtBI1-overexpressing leaves. These results suggested a role of AtBI1 over-expression in delaying MeJA-induced leaf senescence by suppressing the [Ca(2+)](cyt)-dependent activation of MPK6, thus providing a new insight into the function and mechanism of AtBI1 in plant senescence.  相似文献   

17.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   

18.
Jasmonates, potent lipid mediators of defense gene expression in plants, are rapidly synthesized in response to wounding. These lipid mediators also stimulate their own production via a positive feedback circuit, which depends on both JA synthesis and JA signaling. To date, molecular components regulating the activation of jasmonate biogenesis and its feedback loop have been poorly characterized. We employed a genetic screen capable of detecting the misregulated activity of 13-lipoxygenase, which operates at the entry point of the jasmonate biosynthesis pathway. Leaf extracts from the Arabidopsis fou2 (fatty acid oxygenation upregulated 2) mutant displayed an increased capacity to catalyze the synthesis of lipoxygenase (LOX) metabolites. Quantitative oxylipin analysis identified less than twofold increased jasmonate levels in healthy fou2 leaves compared to wild-type; however, wounded fou2 leaves strongly increased jasmonate biogenesis compared to wounded wild-type. Furthermore, the plants displayed enhanced resistance to the fungus Botrytis cinerea. Higher than wild-type LOX activity and enhanced resistance in the fou2 mutant depend fully on a functional jasmonate response pathway. The fou2 mutant carries a missense mutation in the putative voltage sensor of the Two Pore Channel 1 gene (TPC1), which encodes a Ca(2+)-permeant non-selective cation channel. Patch-clamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. The results indicate that cation fluxes exert strong control over the positive feedback loop whereby JA stimulates its own synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号