首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have reviewed the properties of luteinizing hormone/human chorionic gonadotropic (LH/hCG)-sensitive adenylyl cyclase (AC) of human corpus luteum (CL) and its regulation by several hormones and nonhormonal activators. We have also described the changes in enzyme activity in membrane preparations of human and cynomolgus monkey CL obtained at various stages of the menstrual cycle and pregnancy. The data have been analyzed with respect to the functional status of the luteal tissue and to the species differences among primate CL. In the menstrual cycle, luteal AC responsiveness to LH/hCG was detectable during the midluteal phase, but not during the late luteal phase or in the follicular phase of the following cycle. In addition, nonhormonal stimulation was high in CL obtained during the midluteal and late luteal phases, but declined drastically by the follicular phase of the next cycle. In early pregnancy, the enzyme was unresponsive to LH/hCG stimulation, yet its sensitivity to nonhormonal stimulation was similar, if not identical, to that of midluteal phase CL. Functional activity was also evident at the end of pregnancy. These results demonstrate that expression of AC activity in primate luteal membrane changes significantly with varying hormonal status under physiologic conditions. It is concluded that the AC system in luteal membranes is an effective model to study the mechanisms that regulate function and life span of the human and nonhuman primate CL.  相似文献   

2.
Sengupta J  Ghosh D 《Steroids》2000,65(10-11):753-762
Progesterone secretion during the luteal phase influences oviductal and endometrial functions which are essential for embryo viability and implantation in a number of species including primates. Luteal phase estrogen is not essential for progesterone-dependent endometrial receptivity towards implantation and pregnancy in the rhesus monkey and in the human. However, synchronous development of embryo and endometrium is an essential prerequisite for evolutive implantation. Progesterone helps to maintain synchronous development of preimplantation embryo through its action on maternal uterus. The anti-nidatory action of mifepristone, a potent progesterone receptor modulator (PRM) with pronounced antiprogestagenic activity, is known to be associated with desynchronization of endometrium along with repression of glandular secretory differentiation and vascular maturation. Thus, it is likely that early luteal phase administration of mifepristone affects paracrine action of the secretory stage endometrium on the preimplantation stage embryo, and thereby inhibits embryonic development and viability. We shall examine this hypothesis using the rhesus monkey as a primate model.  相似文献   

3.
In Schreibers' long-fingered bat from South Africa (approximately 33 degrees S) copulation, ovulation and fertilization occurred in April and May, implantation was delayed until August, and parturition occurred in December. Delayed implantation coincided with winter, during which the bats remained active, only entering prolonged periods of torpor during particularly cold spells. Plasma progesterone concentration was low during non-pregnancy (1.54 ng/ml) and during delayed implantation (1.67 ng/ml), and thereafter increased to reach a peak mean of 64.82 ng/ml in late pregnancy. Changes in size and ultrastructure of the luteal cells indicated periods of steroidogenesis just after formation of the corpus luteum, and for about 2 months after implantation; reduced steroidogenic activity during delayed implantation; and luteolysis in the last 2 months of pregnancy. Plasma luteinizing hormone (LH) concentration and pituitary LH-beta immunoreactivity were highest during follicular development and peaked just before ovulation. During early delayed implantation, plasma LH concentration was low, and both plasma LH and pituitary LH-beta immunoreactivity increased from July, reaching peaks in late pregnancy. LH may be required to activate the corpus luteum and terminate delayed implantation, or, as in some small carnivores, it may be required for luteal maintenance.  相似文献   

4.
5.
6.
OBJECTIVE--To evaluate the effect of support with human chorionic gonadotrophin in the luteal phase in women taking part in an in vitro fertilisation programme after buserelin and human menopausal gonadotrophin were used to hyperstimulate their ovaries. DESIGN--Controlled group comparison. SETTING--Outpatient department of a private hospital. PATIENTS--115 Women with indications for in vitro fertilisation, all of whom had at least one embryo transferred. INTERVENTIONS--After suppression of the pituitary with buserelin the ovaries of all the women were stimulated with human menopausal gonadotrophin on day 4 of the luteal phase. Human chorionic gonadotrophin (10,000 IU) was given to induce ovulation, and oocytes were recovered 34 hours later. Embryos were transferred 46 to 48 hours after insemination. Women who had received the 10,000 IU of human chorionic gonadotrophin on a date that was an uneven number (n = 61) were allocated to receive support doses of 2500 IU human chorionic gonadotrophin three and six days after that date. The remaining 54 women did not receive hormonal support. END POINT--Determination of the rates of pregnancy. MEASUREMENTS and main results--Support with human chorionic gonadotrophin did not significantly alter the progesterone or oestradiol concentrations in the early or mid-luteal phase. The mean (range) progesterone concentrations in the late luteal phase in women who did not become pregnant were, however, significantly higher in those who received support (16(9-110) nmol/l nu 8(4-46) nmol/l), and the luteal phase was significantly longer in this group (14 days nu 12 days). The rate of pregnancy was significantly higher in the women who received support than in those who did not (25/61 nu 8/54). CONCLUSIONS--When buserelin and human menopausal gonadotrophin are used to hyperstimulate ovaries support with human chorionic gonadotrophin in the luteal phase has a beneficial effect on in vitro fertilisation.  相似文献   

7.
The anatomy and histology of pouched mouse ovaries were studied during the oestrous cycle, pregnancy and lactation along with the relationship between the ovarian structures and circulating concentrations of progesterone. The structure of the ovaries resembled that of most rodents. Follicular development indicated that ovulation takes place on the night between pro-oestrus and oestrus, i.e. at the time when mating normally occurs. Corpora lutea were accumulating in cyclic females, while successively disappearing during pregnancy, leaving only the set formed after conception. After parturition luteal regression was rapid. Theca interna, included in the corpora lutea, formed glandular stromal tissue after regression of the luteal tissue formed from granulosa cells. The progesterone profile of non-pregnant females indicated a short but functional luteal phase (peak at metoestrus) during the cycle. During pregnancy three peaks of progesterone stood out: (1) when implantation starts, (2) when older sets of corpora lutea showed rejuvenation and placental signs were found in the vaginal smears, and (3) 3 days before expected parturition when luteal development (as judged by histology) reached a peak. The placenta may participate in but not 'take over' the progesterone production during later stages of pregnancy. Very low concentrations of peripheral progesterone during lactation and a very low level of follicular development at that time support an earlier suggestion of a lactational anoestrus in pouched mice.  相似文献   

8.
The objectives of this experiment were to determine the effects of corpus luteum characteristics, progesterone concentration, donor-recipient synchrony, embryo quality, type, and developmental stage on pregnancy rates after embryo transfer. We synchronized 763 potential recipients for estrus using one of two synchronization protocols: two doses of PGF2alpha (25 mg i.m.) given 11 d apart (Location 1); and, a single norgestomet implant for 7 d with one dose of PGF2alpha (25 mg i.m.) 24 h before implant removal (Location 2). At embryo transfer, ovaries were examined by rectal palpation and ultrasonography. Of the 526 recipients presented for embryo transfer, 122 received a fresh embryo and 326 received a frozen embryo. Pregnancy rates were greater (P < 0.05) with fresh embryos (83%) than frozen-thawed embryos (69%). Pregnancy rates were not affected by embryo grade, embryo stage, donor-recipient synchrony, or the palpated integrity of the CL. Corpus luteum diameter and luteal tissue volume increased as days post-estrus for the recipients increased. However, pregnancy rates did not differ among recipients receiving embryos 6.5 to 8.5 days after estrus (P > 0.1). There was a significant, positive simple correlation between CL diameter or luteal tissue volume and plasma progesterone concentration (r = 0.15, P < 0.01 and r = 0.18, P < 0.01, respectively). There were no significant differences in mean CL diameter, luteal volume or plasma progesterone concentration among recipients that did or did not become pregnant after embryo transfer. We conclude that suitability of a potential embryo transfer recipient is determined by observed estrus and a palpable corpus luteum, regardless of size or quality.  相似文献   

9.
The cell composition of human and bovine corpora lutea (CL) from various reproductive states was investigated by computerized video-based interactive Bioquant image analysis system IV and by light microscope immunocytochemistry. Human and bovine CL contained more nonluteal cells than luteal cells. Human CL contained a lower number of luteal and a greater number of nonluteal cells than bovine CL. Regardless of the reproductive state, human CL contained more small luteal cells than large luteal cells. In all reproductive states except in the late luteal phase, the bovine CL also contained more small luteal cells than large luteal cells. The average sizes of all the cells in human CL were smaller than in bovine CL. Human CL contained more vascular space than bovine CL during mid and late luteal phases. The number of luteal cells increased and nonluteal cells decreased from early to mid luteal phase, and then luteal cells decreased and nonluteal cells increased in late luteal phase and in degenerating human and bovine CL. While the change of number of small and large luteal cells first occurred from early to mid luteal phase in human CL, it did not take place until the late luteal phase in bovine CL. The average size of large luteal cells in humans and of small luteal cells in cattle did not change, whereas size of the other cells changed in different reproductive states in both human and bovine CL. The cell composition of term pregnancy human CL was similar to mid or late luteal phase, whereas the cell composition of early pregnancy bovine CL was similar to mid luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Changes in serum luteinizing hormone (LH) and progesterone concentrations, number of luteal unoccupied LH receptors, receptor affinity constants, luteal weights and luteal progesterone concentrations were determined during the postovulatory period in the mare. The number of unoccupied LH receptors and receptor affinity was less during the early (Days 1-4) and late [Day 15 through 3rd day after start of corpus luteum (CL) regression] luteal phases than during the mid-luteal (Days 9-14) phase of the postovulatory period (P less than 0.01). The number of LH receptors per CL increased 21-fold (P less than 0.001) from Day 1 to Day 14. Receptor affinity increased 5-fold (P less than 0.001) from Day 1 to Day 13. Receptor number was highly correlated with receptor affinity (P less than 0.01) and both were highly correlated with serum and luteal progesterone (P less than 0.01). During regression of the CL, the number of LH receptors and receptor affinity decreased concomitantly with serum and luteal progesterone. Morphologically, luteal cell development and degeneration correlated with the change in receptor numbers, affinity constants and luteal and serum progesterone concentrations. Receptor number and affinity, luteal weight and serum and luteal progesterone concentrations did not differ between the CL from multiple ovulations. Random variations in the data observed between CL from multiple and single ovulations suggested that CL from the two groups were not different in structure and function. In summary, the above results suggest that major factors in regulation of progesterone secretion and maintenance of the equine CL are changes in the number of LH receptors and the affinity constants throughout the postovulatory period.  相似文献   

11.
Changes and local distribution of oviductal progesterone (P(4)) concentration during the estrous cycle and early pregnancy in cows were investigated. Intact reproductive tracts were collected from 16 Holstein cows at an abattoir. Samples were classified in to 4 stages (follicular, postovulatory, luteal and early pregnant,< 20 d) based on visual observation of corpus luteum (CL), uterine characteristics and luteal P(4) concentrations. Oviducts were separated from the uterus at the utero-tubal junction and divided into 4 parts: fimbriae, proximal, medial and distal parts. Luteal tissue samples were also collected. Progesterone levels in oviductal and luteal tissues were determined by radioimmunoassay (RIA). Comparatively higher (P < 0.001) P(4) levels were found in stages with a functioning CL ( luteal phase and early pregnancy) than in those with a regressing CL (follicular phase and post ovulation). The oviduct ipsilateral to the CL bearing ovary during the luteal phase and early pregnancy showed higher ( P < 0.001) P(4) concentrations than the contralateral side. Such a difference was not observed during the follicular phase or post ovulation. The ipsilateral oviduct to the functioning CL at early pregnancy showed higher (P <0.05) P(4) levels than at the luteal phase, while no significant difference in luteal P(4) levels between these 2 stages was observed. Neither were any differences in P(4) concentration within the oviduct observed during any phase of the estrous cycle or during early pregnancy. A positive relationship between luteal and oviductal P(4) concentrations was noted. In conclusion, changes in P(4) levels in the oviduct depend on the location and functional stage of the CL. Localized levels of P(4) in the oviduct may be due to local delivery of P(4) from the CL.  相似文献   

12.
Relaxin is one of the hormones present during pregnancy and it is synthesized primarily by corpora lutea (CL). Other reproductive tissues including CL of the menstrual cycle may also synthesize this hormone. Very little is known, however, about the cellular and subcellular distribution of relaxin in human CL and dependence of luteal relaxin on the reproductive state. The light and electron microscope immunocytochemical studies described here were undertaken to obtain this information using antisera to porcine and human relaxin. Immunostaining was found in large luteal cells (17-30 microns) but not in small luteal cells (7-16 microns) or in nonluteal cells in any of the reproductive states or in human hepatocytes. Luteal immunostaining was low in early luteal phase; it increased progressively, reaching the highest level in late luteal phase, and then decreased greatly in corpora albicantia. Term pregnancy CL contained similar immunostaining as early luteal phase CL. Mid luteal phase CL contained more immunostained cells than late luteal phase CL, but the late luteal phase CL contained a greater amount of immunostaining per cell than mid luteal phase CL. The immunogold particles due to relaxin were primarily present in secretory granules and to a small extent in rough endoplasmic reticulum. Quantitation revealed that secretory granules contained a much higher number of gold particles than did rough endoplasmic reticulum. These two organelles from late luteal phase CL contained greater numbers of gold particles than those from mid luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Immunocytochemical staining for relaxin in ovarian sections of pregnant mice from day 11 through day 18 of gestation revealed that only corpora lutea (CL) of pregnancy are stained. Evaluation of serial sections of ovaries from a day 16 pregnant mouse revealed that the only luteal structures present are CL of pregnancy. The number of CL present in each ovary equaled the number of implantation sites in each related horn (7 on the right side and 8 on the left side). These large CL varied in shape, being round in some profiles to very elongate in others. All CL were immunochemically stained for relaxin using the peroxidase-antiperoxidase method of L. Sternberger (Immunocytochemistry, 2nd ed. Wiley, New York, 1979). The intensity of the strain varied from cell to cell within each CL. Small luteal structures that were observed to be immunochemically stained for relaxin were demonstrated to represent the periphery of CL of pregnancy. No luteinized follicles were observed and interstitial cells and follicles were not immunochemically stained in any of the day 16 serial ovarian sections or in any of the ovarian sections from pregnant mice on the other days of gestation studied. CL of previous cycles were not observed to be present in the ovaries at days 15, 16, or 18 of gestation. However on day 14 and before, CL of previous cycles were observed and they did not exhibit any relaxin immunostaining. Immunocytochemical studies using the biotin-avidin system revealed that no relaxin immunostaining could be demonstrated in the ovaries of cycling mice at any stage of the estrous cycle. In conclusion, this study revealed that the only ovarian structures demonstrating relaxin immunocytochemical staining in the mouse were CL of pregnancy.  相似文献   

14.
In polyovular species, it is unclear whether the characteristics of each individual corpus luteum (CL), such as mass, progesterone concentration and receptors for luteinizing hormone (LH), are representative of those of its cohorts during the ovarian cycle. The current study was performed 1) to characterize the conditions for estimation of binding parameters for LH receptors in porcine CL, and 2) to compare LH binding sites, luteal progesterone concentrations and luteal masses among CL of ovaries within individual pigs. Gonadotropin binding sites in porcine CL were characterized via specific binding of 125I-human (h) LH to 20,000 X g particulate fractions of luteal tissue. Specific binding was directly proportional to tissue content and was detectable at the lowest content tested (0.5 mg tissue equivalents/tube). Specific uptake of 0.25 ng LH by 5.0 mg tissue equivalents was time- and temperature-dependent; steady-state binding was achieved within 20 h at 37 and 25 degrees C. Binding of LH after 20 h incubation at 37 degrees C (4718 +/- 192 cpm, means +/- SEM) and 25 degrees C (4112 +/- 340 cpm) was greater than that at 4 degrees C (1930 +/- 5 cpm, P less than 0.01). Luteal particulates from individual CL of ovaries collected from four mature nonpregnant pigs (13-23 CL/pig) were incubated with eight concentrations of 125I-hLH. Steady-state binding depended upon hormone concentration until reaching saturation at 2.5 ng 125I-hLH/tube. Scatchard analyses yielded linear plots. Binding capacities for LH ranged among pigs from 0.71 +/- 0.03 to 3.69 +/- 0.13 fmol/mg CL equivalents and receptor affinities (Kd) ranged from 0.92 +/- 0.05 to 4.89 +/- 0.41 X 10(-11) M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The combination of a few factors, including poor captive reproduction, secession of importation from the wild and advances in hormone detection and ultrasonography, has contributed to the current knowledge on the elephant reproductive cycle. Several reproductive features in elephants differ markedly from other mammals. These include the urogenital tract anatomy, length and structure of the reproductive cycle, the formation of multiple corpora lutea and the type and secretion pattern of reproductive hormones. Being 13-18 weeks in length, the elephant estrous cycle is the longest amongst all studied non-seasonal mammals to date. Progesterone increases 1-3 days after ovulation, indicating the start of the luteal phase, which lasts 6-12 weeks. This is followed by a 4- to 6-week follicular phase that is concluded by two, precisely spaced and timed, LH surges. In general, the first, anovulatory LH surge occurs exactly 19-21 days before the second, ovulatory surge. Normally, a single follicle is ovulated. However, beside a corpus luteum (CL) forming on the site of ovulation, multiple accessory CLs can be found on the ovaries. Unlike many other species, the predominant progestagen secreted by luteal tissues is not progesterone, but rather its 5-alpha-reduced metabolites. The currently known aspects of the unique estrous cycle in Asian and African elephants, covering estrous behavior, circulating hormones, ultrasonography and anatomy of the reproductive organs as well as hormonal manipulation treatment possibilities, will be reviewed here.  相似文献   

16.
17.
To characterize plasma estradiol, LH and FSH patterns of secretion during the bitch estrous cycle, blood samples were obtained daily from 15 days before until 135 days after the LH surge in 10 pregnant and 10 nonpregnant beagle bitches. After an initial increase between days 15 and 10 and an expected proestrous peak, estradiol concentrations increased again from days 9-12 (corresponding to cytological metestrus) from basal values observed around day 9 after the LH surge, and remained significantly elevated throughout the luteal phase both in pregnant and nonpregnant animals. Concomitantly with the end of the luteal phase, plasma concentrations of estradiol returned to basal values in both groups. During the mid- to late-luteal phase, mean basal LH secretion was significantly elevated throughout in the pregnant relative to the nonpregnant animals. However, in nonpregnant animals, pulsatility was increased and peaks of higher amplitude were observed. The plasma FSH profiles, determined by a specific homologous RIA, differed significantly between pregnant and nonpregnant bitches during the last two-thirds of the luteal phase with a mean FSH level more elevated during pregnancy. The FSH level then decreased around parturition and low concentrations during lactation period were observed. The FSH concentrations remained steady in nonpregnant luteal phases from early luteal phase through mid-anestrus. The differences in pregnant and nonpregnant LH and FSH concentrations suggest pregnancy differences in regulation of the corpus luteum. Finally, the elevated estradiol concentrations observed during the luteal phase of both pregnant and nonpregnant animals suggest that an ovarian production of estrogens may be involved in overall corpus luteum regulation in dogs as in other species.  相似文献   

18.
The microsphere technique was used to obtain estimates of ovarian capillary blood flow near ovulation, in 8 seasonally anoestrous ewes, which were induced to ovulate by GnRH therapy. Plasma progesterone concentrations were monitored in jugular blood sampled between Days 4 and 7 after the onset of the preovulatory LH surge. The ewes were then slaughtered. Three of the ewes were treated with a single injection of 20 mg progesterone before GnRH therapy. In these ewes and 1 other, plasma progesterone values increased after ovulation and reached 1.0 ng/ml on Day 7 following the preovulatory LH surge (normal, functional CL), whilst in the other 4 ewes progesterone concentrations increased initially then declined to 0.5 ng/ml by Day 7 (abnormal CL). In the ewes exhibiting normal luteal function, the mean ovarian capillary blood flow was significantly greater (P less than 0.01) than that for ewes having abnormal luteal function. Irrespective of the type of CL produced, capillary blood flow was significantly greater (P less than 0.05) in ovulatory ovaries than in non-ovulatory ovaries. These findings indicate that the rate of capillary blood flow in ovaries near ovulation may be a critical factor in normal development and maturation of preovulatory follicles and function of subsequently formed CL.  相似文献   

19.
Peripheral concentrations of immunoreactive relaxin are undetectable in primates during the nonfertile menstrual cycle, but become measurable during the interval when chorionic gonadotropin (CG) rises in early pregnancy. The objectives of the current study were to determine if exogenous CG, administered in a dosage regimen which invoked patterns and concentrations resembling those of early pregnancy, would induce relaxin secretion in nonpregnant rhesus monkeys, and whether the induction was dependent on the age of the corpus luteum (CL) at the onset of treatment. Female rhesus monkeys received twice-daily i.m. injections of increasing doses of human CG (hCG) for 10 days beginning in the early (n = 4), mid (n = 6) or late (n = 4) luteal phase of the menstrual cycle [5.3 +/- 0.3, 8.3 +/- 0.5, and 12.0 +/- 0.4 days after the midcycle luteinizing hormone (LH) surge, respectively; means +/- SEM]. Whereas immunoreactive relaxin was nondetectable in the luteal phase of posttreatment cycles, detectable levels of relaxin were observed in 2 of 4, 5 of 6, and 3 of 4 monkeys during hCG treatment in the early, mid and late luteal phase, respectively. Although CG treatment rapidly enhance progesterone levels, the appearance of relaxin was deferred; relaxin was first detectable 9.0 +/- 1.0 and 4.7 +/- 1.9 days after the onset of CG treatment at early and late luteal phases. Patterns of relaxin concentrations differed among groups (P less than 0.05, ANOVA; split plot design) and relaxin levels were lowest (P less than 0.01) in monkeys treated during the early luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Prostaglandin F2alpha (PGF2alpha) is a major physiological luteolysin in the cow. However, injection of PGF2alpha before day 5 (day 0 = estrus) of the estrous cycle dose not induce luteolysis. On the other hand, the early corpus luteum (CL) actively produces PGF2alpha. This indicates that luteal PGF2alpha may play a key role in the refractoriness to PGF2alpha injected during the early luteal phase when angiogenesis is active in the CL. Thus, this study aimed to investigate the possible interaction between pituitary hormones and local factors (luteal peptides) on secretion of PGF2alpha and progesterone (P) by the early bovine CL, and to evaluate the effect of growth hormone (GH) as well as its interactions on production of PGF2alpha in the developing CL. A RT-PCR analysis revealed that mRNA for GH receptor in CL was fully expressed from early in the luteal phase throughout the estrous cycle, while luteinizing hormone (LH) receptor mRNA was expressed less by the early and regressing CL than those at mid or late luteal phases (P < 0.05). For the stimulation test, an in vitro microdialysis system (MDS) was used as a model. Each bovine early CL (days 3-4) was implanted with the MDS, and maintained in an organ culture chamber. The infusion of GH, insulin-like growth factor-1 (IGF-1) and oxytocin (OT) increased (P < 0.05) PGF2alpha and P release. In contrast, LH had no effect (P > 0.05) on PGF2alpha secretion and little effect on P release. Unexpectedly, there was no distinct interaction between pituitary hormones and luteal peptides on secretion of PGF2alpha and P. These results indicate that GH is a more powerful stimulator of PGF2alpha and P production in the early bovine CL than LH and suggest that GH and luteal peptides, IGF-1 and OT, contribute to maintenance of elevated PGF2alpha production in the developing bovine CL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号