首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transition from interphase to mitosis is marked by a dramatic change in microtubule dynamics resulting in the reorganization of the microtubule network that culminates in mitotic spindle formation. While the molecular basis for this change in microtubule organization remains obscure, it is currently thought that a balance in the activity of microtubule stabilizing and destabilizing factors regulates how dynamic cellular microtubules are. By mixing the microtubule stabilizer XMAP215 and the microtubule destabilizer XKCM1, reconstitution of in vivo-like microtubule dynamics has now been achieved in vitro.  相似文献   

2.
In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.  相似文献   

3.
Mechanisms underlying the organization of centrosome-derived microtubule arrays are well understood, but less is known about how acentrosomal microtubule networks are formed. The basal cortex of polarized epithelial cells contains a microtubule network of mixed polarity. We examined how this network is organized by imaging microtubule dynamics in acentrosomal basal cytoplasts derived from these cells. We show that the steady-state microtubule network appears to form by a combination of microtubule-microtubule and microtubule-cortex interactions, both of which increase microtubule stability. We used computational modeling to determine whether these microtubule parameters are sufficient to generate a steady-state acentrosomal microtubule network. Microtubules undergoing dynamic instability without any stabilization points continuously remodel their organization without reaching a steady-state network. However, the addition of increased microtubule stabilization at microtubule-microtubule and microtubule-cortex interactions results in the rapid assembly of a steady-state microtubule network in silico that is remarkably similar to networks formed in situ. These results define minimal parameters for the self-organization of an acentrosomal microtubule network.  相似文献   

4.
Microtubules in permeabilized cells are devoid of dynamic activity and are insensitive to depolymerizing drugs such as nocodazole. Using this model system we have established conditions for stepwise reconstitution of microtubule dynamics in permeabilized interphase cells when supplemented with various cell extracts. When permeabilized cells are supplemented with mammalian cell extracts in the presence of protein phosphatase inhibitors, microtubules become sensitive to nocodazole. Depolymerization induced by nocodazole proceeds from microtubule plus ends, whereas microtubule minus ends remain inactive. Such nocodazole-sensitive microtubules do not exhibit subunit turnover. By contrast, when permeabilized cells are supplemented with Xenopus egg extracts, microtubules actively turn over. This involves continuous creation of free microtubule minus ends through microtubule fragmentation. Newly created minus ends apparently serve as sites of microtubule depolymerization, while net microtubule polymerization occurs at microtubule plus ends. We provide evidence that similar microtubule fragmentation and minus end–directed disassembly occur at the whole-cell level in intact cells. These data suggest that microtubule dynamics resembling dynamics observed in vivo can be reconstituted in permeabilized cells. This model system should provide means for in vitro assays to identify molecules important in regulating microtubule dynamics. Furthermore, our data support recent work suggesting that microtubule treadmilling is an important mechanism of microtubule turnover.  相似文献   

5.
Microtubules are dynamic cytoskeletal polymers present in all eukaryotic cells. In animal cells, they are organized by the centrosome, the major microtubule-organizing center. Many centrosomal proteins act coordinately to modulate microtubule assembly and organization. Our previous work has shown that Cep70, a novel centrosomal protein regulates microtubule assembly and organization in mammalian cells. However, the molecular details remain to be investigated. In this study, we investigated the molecular mechanism of how Cep70 regulates microtubule assembly using purified proteins. Our data showed that Cep70 increased the microtubule length without affecting the microtubule number in the purified system. These results demonstrate that Cep70 could directly regulate microtubule assembly by promoting microtubule elongation instead of microtubule nucleation.  相似文献   

6.
Current models of microtubule assembly from pure tubulin involve a nucleation phase followed by microtubule elongation at a constant polymer number. Both the rate of microtubule nucleation and elongation are thought to be tightly influenced by the free GTP-tubulin concentration, in a law of mass action-dependent manner. However, these basic hypotheses have remained largely untested due to a lack of data reporting actual measurements of the microtubule length and number concentration during microtubule assembly.Here, we performed simultaneous measurements of the polymeric tubulin concentration, of the free GTP-tubulin concentration, and of the microtubule length and number concentration in both polymerizing and depolymerizing conditions. In agreement with previous work we find that the microtubule nucleation rate is strongly dependent on the initial GTP-tubulin concentration. But we find that microtubule nucleation persists during microtubule elongation. At any given initial tubulin-GTP concentration, the microtubule nucleation rate remains constant during polymer assembly, despite the wide variation in free GTP-tubulin concentration. We also find a remarkable constancy of the rate of microtubule elongation during assembly. Apparently, the rate of microtubule elongation is intrinsic to the polymers, insensitive to large variations of the free GTP-tubulin concentration. Finally we observe that when, following assembly, microtubules depolymerize below the free GTP-tubulin critical concentration, the rate-limiting factor for disassembly is the frequency of microtubule catastrophe. At all time-points during disassembly, the microtubule catastrophe frequency is independent of the free GTP-tubulin concentration but, as the microtubule nucleation rate, is strongly dependent on the initial free GTP-tubulin concentration. We conclude that the dynamics of both microtubule assembly and disassembly depend largely on factors other than the free GTP-tubulin concentration. We propose that intrinsic structural factors and endogenous regulators, whose concentration varies with the initial conditions, are also major determinants of these dynamics.  相似文献   

7.
An expanding collection of proteins localises to microtubule ends to regulate cytoskeletal dynamics and architecture by unknown molecular mechanisms. Electron microscopy is invaluable for studying microtubule structure, but because microtubule ends are heterogeneous, their structures are difficult to determine. We therefore investigated whether tubulin oligomers induced by the drug dolastatin could mimic microtubule ends. The microtubule end-dependent ATPase of kinesin-13 motors is coupled to microtubule depolymerisation. Significantly, kinesin-13 motor ATPase activity is stimulated by dolastatin-tubulin oligomers, suggesting, first, that these oligomers share properties with microtubule ends and, second, that the physical presence of an end is less important than terminal tubulin flexibility for microtubule end recognition by the kinesin-13 motor. Using electron microscopy, we visualised the kinesin-13 motor-dolastatin-tubulin oligomer interaction in nucleotide states mimicking steps in the ATPase cycle. This enabled us to detect conformational changes that the motor undergoes during depolymerisation. Our data suggest that such tubulin oligomers can be used to examine other microtubule end-binding proteins.  相似文献   

8.
We used computer simulation to understand the functional relationships between motor (dynein, HSET, and Eg5) and non-motor (NuMA) proteins involved in microtubule aster organization. The simulation accurately predicted microtubule organization under all combinations of motor and non-motor proteins, provided that microtubule cross-links at minus-ends were dynamic, and dynein and HSET were restricted to cross-linking microtubules in parallel orientation only. A mechanistic model was derived from these data in which a combination of two aggregate properties, Net Minus-end-directed Force and microtubule Cross-linking Orientation Bias, determine microtubule organization. This model uses motor and non-motor proteins, accounts for motor antagonism, and predicts that alterations in microtubule Cross-linking Orientation Bias should compensate for imbalances in motor force during microtubule aster formation. We tested this prediction in the mammalian mitotic extract and, consistent with the model, found that increasing the contribution of microtubule cross-linking by NuMA compensated for the loss of Eg5 motor activity. Thus, this model proposes a precise mechanism of action of each noncentrosomal protein during microtubule aster organization and suggests that microtubule organization in spindles involves both motile forces from motors and static forces from non-motor cross-linking proteins.  相似文献   

9.
BACKGROUND: CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS: We used the N-terminal part of CLIP-170 (named H2), which contains the microtubule binding domains, to investigate how it modulates in vitro microtubule dynamics and structure. We found that H2 primarily promoted rescues (transitions from shrinkage to growth) of microtubules nucleated from pure tubulin and isolated centrosomes, and stimulated microtubule nucleation. Electron cryomicroscopy revealed that H2 induced the formation of tubulin rings in solution and curved oligomers at the extremities of microtubules in assembly conditions. CONCLUSIONS: These results suggest that CLIP-170 targets specifically at microtubule plus ends by copolymerizing with tubulin and modulates microtubule nucleation, polymerization, and rescues by the same basic mechanism with tubulin oligomers as intermediates.  相似文献   

10.
Goodwin SS  Vale RD 《Cell》2010,143(2):263-274
Tubulin assembles into microtubule polymers that have distinct plus and minus ends. Most microtubule plus ends in living cells are dynamic; the transitions between growth and shrinkage are regulated by assembly-promoting and destabilizing proteins. In contrast, minus ends are generally not dynamic, suggesting their stabilization by some unknown protein. Here, we have identified Patronin (also known as ssp4) as a protein that stabilizes microtubule minus ends in Drosophila S2 cells. In the absence of Patronin, minus ends lose subunits through the actions of the Kinesin-13 microtubule depolymerase, leading to a sparse interphase microtubule array and short, disorganized mitotic spindles. In vitro, the selective binding of purified Patronin to microtubule minus ends is sufficient to protect them against Kinesin-13-induced depolymerization. We propose that Patronin caps and stabilizes microtubule minus ends, an activity that serves a critical role in the organization of the microtubule cytoskeleton.  相似文献   

11.
Dynamic microtubules facilitate chromosome arrangement before anaphase, whereas during anaphase microtubule stability assists chromosome separation. Changes in microtubule dynamics at the metaphase-anaphase transition are regulated by Cdk1. Cdk1-mediated phosphorylation of Sli15/INCENP promotes preanaphase microtubule dynamics by preventing chromosomal passenger complex (CPC; Sli15/INCENP, Bir1/Survivin, Nbl1/Borealin, Ipl1/Aurora) association with spindles. However, whether Cdk1 has sole control over microtubule dynamics, and how CPC-microtubule association influences microtubule behavior, are unclear. Here, we show that Ipl1/Aurora-dependent phosphorylation of Sli15/INCENP modulates microtubule dynamics by preventing CPC binding to the preanaphase spindle and to the central spindle until late anaphase, facilitating spatiotemporal control of microtubule dynamics required for proper metaphase centromere positioning and anaphase spindle elongation. Decreased Ipl1-dependent Sli15 phosphorylation drives direct CPC binding to microtubules, revealing how the CPC influences microtubule dynamics. We propose that Cdk1 and Ipl1/Aurora cooperatively modulate microtubule dynamics and that Ipl1/Aurora-dependent phosphorylation of Sli15 controls spindle function by excluding the CPC from spindle regions engaged in microtubule polymerization.  相似文献   

12.
Microtubule assembly is vital for many fundamental cellular processes. Current models for microtubule assembly kinetics assume that the subunit dissociation rate from a microtubule tip is independent of free subunit concentration. Total-Internal-Reflection-Fluorescence (TIRF) microscopy experiments and data from a laser tweezers assay that measures in vitro microtubule assembly with nanometer resolution, provides evidence that the subunit dissociation rate from a microtubule tip increases as the free subunit concentration increases. These data are consistent with a two-dimensional model for microtubule assembly, and are explained by a shift in microtubule tip structure from a relatively blunt shape at low free concentrations to relatively tapered at high free concentrations. We find that because both the association and the dissociation rates increase at higher free subunit concentrations, the kinetics of microtubule assembly are an order-of-magnitude higher than currently estimated in the literature.  相似文献   

13.
End-binding proteins (EBs) comprise a conserved family of microtubule plus end-tracking proteins. The concerted action of calponin homology (CH), linker, and C-terminal domains of EBs is important for their autonomous microtubule tip tracking, regulation of microtubule dynamics, and recruitment of numerous partners to microtubule ends. Here we report the detailed structural and biochemical analysis of mammalian EBs. Small-angle X-ray scattering, electron microscopy, and chemical cross-linking in combination with mass spectrometry indicate that EBs are elongated molecules with two interacting CH domains, an arrangement reminiscent of that seen in other microtubule- and actin-binding proteins. Removal of the negatively charged C-terminal tail did not affect the overall conformation of EBs; however, it increased the dwell times of EBs on the microtubule lattice in microtubule tip-tracking reconstitution experiments. An even more stable association with the microtubule lattice was observed when the entire negatively charged C-terminal domain of EBs was replaced by a neutral coiled-coil motif. In contrast, the interaction of EBs with growing microtubule tips was not significantly affected by these C-terminal domain mutations. Our data indicate that long-range electrostatic repulsive interactions between the C-terminus and the microtubule lattice drive the specificity of EBs for growing microtubule ends.  相似文献   

14.
The plus-end of the microtubule has a central role in the interactions that occur between the microtubule and actin cytoskeletons. The recent identification of a family of proteins that congregate at the plus-end is enabling an increased mechanistic understanding of how this cross talk is accomplished. These proteins, termed plus-end tracking proteins because they appear to associate with the plus-end as it grows, have already been shown to regulate microtubule dynamics and to facilitate the formation of connections between the plus-end and the actin-rich cortex. Several motor proteins, including an actin-based motor, microtubule-based motors that move towards either end of the microtubule and microtubule motors that depolymerize microtubule ends, can now be added to the list of plus-end tracking proteins. Here, we discuss how the presence of these motors at the plus-end seems to drive several fundamental cellular processes involving force generation at the interface between microtubule ends and the cortex, vesicle translocation following search and capture, microtubule disassembly and the delivery of signals to the cortex that govern actin assembly and cell polarity.  相似文献   

15.
再生神经中微管,神经丝与轴突截面积的变化   总被引:2,自引:0,他引:2  
用电镜及图象分析的方法研究了再生轴突中微管、神经丝与轴突截面积的变化,发现神经再生过程中微管及神经丝的密度增加,并与轴突截面积呈相关关系,而且微管的变化更早,更明显。由于微管参与了轴浆转运的机制,微管的增加提示其在神经再生中起了重要的作用。  相似文献   

16.
17.
Microtubule and caveolin have common properties in intracellular trafficking and the regulation of cellular growth. Overexpression of caveolin in vascular smooth muscle cells increased the polymer form of microtubule without changing in the total amount of tubulin, and downregulation of caveolin decreased the polymer form of microtubule. Fractionation of cellular proteins followed by immunodetection as well as immunostaining of caveolin and microtubule revealed that caveolin and a portion of microtubule were co-localized in caveolar fractions. A caveolin scaffolding domain peptide, which mimics caveolin function, did not alter the polymerization of microtubule in vitro, but dramatically inhibited the depolymerization of microtubule induced by stathmin, a microtubule destabilizing protein, which was also found in caveolar fractions. Accordingly, it is most likely that caveolin increased the polymer form of microtubule through the inhibition of a microtubule destabilizer, stathmin, suggesting a novel role of caveolin in regulating cellular network and trafficking.  相似文献   

18.
Microtubule plus end dynamics are regulated by a conserved family of proteins called plus end–tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics. However, TACC3 has not been shown to function as a +TIP in vertebrates. Here we show that TACC3 promotes axon outgrowth and regulates microtubule dynamics by increasing microtubule plus end velocities in vivo. We also demonstrate that TACC3 acts as a +TIP in multiple embryonic cell types and that this requires the conserved C-terminal TACC domain. Using high-resolution live-imaging data on tagged +TIPs, we show that TACC3 localizes to the extreme microtubule plus end, where it lies distal to the microtubule polymerization marker EB1 and directly overlaps with the microtubule polymerase XMAP215. TACC3 also plays a role in regulating XMAP215 stability and localizing XMAP215 to microtubule plus ends. Taken together, our results implicate TACC3 as a +TIP that functions with XMAP215 to regulate microtubule plus end dynamics.  相似文献   

19.
AKAP350 is a multiply spliced type II protein kinase A-anchoring protein that localizes to the centrosomes in most cells and the Golgi apparatus in epithelial cells. Multiple studies suggest that AKAP350 is involved in microtubule nucleation at the centrosome. Our previous studies demonstrated that AKAP350 was necessary for the maintenance of Golgi apparatus integrity. These data suggested that AKAP350 might be necessary for normal cytoskeletal interactions with the Golgi. To examine the relationship of AKAP350 with the microtubule cytoskeleton, we analyzed the effect of the depletion of AKAP350 on microtubule regrowth after nocodazole treatment in HeLa cells. The decrease in AKAP350 expression with short interfering RNA induced a delay in microtubule elongation with no effect on microtubule aster formation. In contrast, overexpression of the centrosomal targeting domain of AKAP350 elicited alterations in aster formation, but did not affect microtubule elongation. RNA interference for AKAP350 also induced an increase in cdc42 activity during microtubule regrowth. Our data suggest that AKAP350 has a role in the remodeling of the microtubule cytoskeleton.  相似文献   

20.
Microtubules are intrinsically dynamic polymers. Two kinds of dynamic behaviors, dynamic instability and treadmilling, are important for microtubule function in cells. Both dynamic behaviors appear to be tightly regulated, but the cellular molecules and the mechanisms responsible for the regulation remain largely unexplored. While microtubule dynamics can be modulated transiently by the interaction of regulatory molecules with soluble tubulin, the microtubule itself is likely to be the primary target of cellular molecules that regulate microtubule dynamics. The antimitotic drugs that modulate microtubule dynamics serve as excellent models for such cellular molecules. Our laboratory has been investigating the interactions of small drug molecules and stabilizing microtubule-associated proteins (MAPs) with microtubule surfaces and ends. We find that drugs such as colchicine, vinblastine, and taxol, and stabilizing MAPs such as tau, strongly modulate microtubule dynamics at extremely low concentrations under conditions in which the microtubule polymer mass is minimally affected. The powerful modulation of the dynamics is brought about by the binding of only a few drug or MAP molecules to distinct binding sites at the microtubule surface or end. Based upon our understanding of the well-studied drugs and stabilizing MAPs, it is clear that molecules that regulate dynamics such as Kin 1 and stathmin could bind to a large number of distinct tubulin sites on microtubules and employ an array of mechanisms to selectively and powerfully regulate microtubule dynamics and dynamics-dependent cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号