首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate.  相似文献   

2.
Nitrogen starvation-mediated reduction of Ypk1 is suggested to suppress translational initiation, possibly in parallel with the target of rapamycin complex 1 (TORC1) signaling. However, the molecular mechanism that regulates Ypk1 in nitrogen-starved cells is poorly understood. Here we report that Ypk1 is a novel selective substrate for nitrogen starvation-triggered proteolysis requiring autophagy system. Among various nutrient starvation methods used to elicit autophagy, rapid Ypk1 degradation was specific to nitrogen starvation. In screening genes required for such nitrogen starvation-specific vacuolar proteolysis, we found that autophagy-related degradation of Ypk1 depended on the endosomal sorting complex required for transport (ESCRT) machinery, which is conventionally thought to function in endosomal trafficking. In microscopic analyses, the disruption of ESCRT subunits resulted in the accumulation of both Ypk1 and autophagosomal Atg8 at a perivacuolar site that was distinct from conventional endosomes. ESCRT machinery was not involved in autophagic flux induced by the TORC1 inhibitor rapamycin, thus suggesting that ESCRT represents an exclusive mechanism of nitrogen starvation-specific proteolysis of Ypk1. Overall, we propose a novel regulation of Ypk1 that is specific to nitrogen limitation.  相似文献   

3.
Disassembly of the endosomal sorting complex required for transport (ESCRT) machinery from biological membranes is a critical final step in cellular processes that require the ESCRT function. This reaction is catalyzed by VPS4, an AAA-ATPase whose activity is tightly regulated by a host of proteins, including LIP5 and the ESCRT-III proteins. Here, we present structural and functional analyses of molecular interactions between human VPS4, LIP5, and the ESCRT-III proteins. The N-terminal domain of LIP5 (LIP5NTD) is required for LIP5-mediated stimulation of VPS4, and the ESCRT-III protein CHMP5 strongly inhibits the stimulation. Both of these observations are distinct from what was previously described for homologous yeast proteins. The crystal structure of LIP5NTD in complex with the MIT (microtubule-interacting and transport)-interacting motifs of CHMP5 and a second ESCRT-III protein, CHMP1B, was determined at 1 Å resolution. It reveals an ESCRT-III binding induced moderate conformational change in LIP5NTD, which results from insertion of a conserved CHMP5 tyrosine residue (Tyr182) at the core of LIP5NTD structure. Mutation of Tyr182 partially relieves the inhibition displayed by CHMP5. Together, these results suggest a novel mechanism of VPS4 regulation in metazoans, where CHMP5 functions as a negative allosteric switch to control LIP5-mediated stimulation of VPS4.  相似文献   

4.
Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus.  相似文献   

5.
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.  相似文献   

6.
The ceramide transport protein CERT mediates the inter-organelle transport of ceramide for the synthesis of sphingomyelin, presumably through endoplasmic reticulum (ER)-Golgi membrane contact sites. CERT has a short peptide motif named FFAT, which associates with the ER-resident membrane protein VAP. We show that the phosphorylation of CERT at serine 315, which is adjacent to the FFAT motif, markedly enhanced the interaction of CERT with VAP. The phosphomimetic CERT S315E mutant exhibited higher activity to support the ER-to-Golgi transport of ceramide than the wild-type control in a semi-intact cell system, and this enhanced activity was abrogated when its FFAT motif was deleted. The level of phosphorylation of CERT at Ser-315 increased in HeLa cells treated with a sphingolipid biosynthesis inhibitor or exogenous sphingomyelinase. Expression of CERT S315E induced intracellular punctate structures, to which CERT and VAP were co-localized, and the occurrence of the structure was dependent on both phosphatidylinositol 4-monophosphate binding and VAP binding activities of CERT. Phosphorylation of another region (named a serine-rich motif) in CERT is known to down-regulate the activity of CERT. Analysis of various CERT mutant constructs showed that the de-phosphorylation of the serine-rich motif and the phosphorylation of Ser-315 likely have the additive contribution to enhance the activity of CERT. These results demonstrate that the phosphorylation of CERT at the FFAT motif-adjacent serine affected its affinity for VAP, which may regulate the inter-organelle trafficking of ceramide in response to the perturbation of cellular sphingomyelin and/or other sphingolipids.  相似文献   

7.
G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Gαi or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.  相似文献   

8.
Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptors (SNAREs) participate in the specificity of membrane fusions in the cell. The mechanisms of specific SNARE sorting are still however poorly documented. We investigated the possible role of Adaptor Protein (AP) complexes in sorting of the Dictyostelium discoideum v-SNARE VAMP7. In live cells, GFP-VAMP7 is observed in the membrane of endocytic compartments. It is also observed in the plasma membrane of a small proportion of the cells. Mutation of a potential dileucine motif dramatically increases the proportion of cells with GFP-VAMP7 in their plasma membrane, strongly supporting the participation of an AP complex in VAMP7 sorting to the endocytic pathway. A partial increase occurs in knockout cells for the medium subunits of AP-2 and AP-3 complexes, indicating a role for both AP-2 and AP-3. VAMP7, as well as its t-SNAREs partners syntaxin 8 and Vti1, are co-immunoprecipitated with each of the medium subunits of the AP-1, AP-2, AP-3 and AP-4 complexes. This result supports the conclusion that VAMP7 directly interacts with both AP-2 and AP-3. It also raises the hypothesis of an interaction with AP-1 and AP-4. GFP-VAMP7 is retrieved from the endocytic pathway at and/or before the late post-lysosomal stage through an AP-independent mechanism.  相似文献   

9.
The transporter associated with antigen processing (TAP) constitutes a focal element in the adaptive immune response against infected or malignantly transformed cells. TAP shuttles proteasomal degradation products into the lumen of the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. Here, the heterodimeric TAP complex was purified and reconstituted in nanodiscs in defined stoichiometry. We demonstrate that a single heterodimeric core-TAP complex is active in peptide binding, which is tightly coupled to ATP hydrolysis. Notably, with increasing peptide length, the ATP turnover was gradually decreased, revealing that ATP hydrolysis is coupled to the movement of peptide through the ATP-binding cassette transporter. In addition, all-atom molecular dynamics simulations show that the observed 22 lipids are sufficient to form an annular belt surrounding the TAP complex. This lipid belt is essential for high affinity inhibition by the herpesvirus immune evasin ICP47. In conclusion, nanodiscs are a powerful approach to study the important role of lipids as well as the function, interaction, and modulation of the antigen translocation machinery.  相似文献   

10.
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号